Aufgabenbeispiele von Tests

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hypothesen-Test linksseitig

Beispiel:

Durch einen Test soll statistisch belegt werden, dass eine bestimmte Wahrscheinlichkeit p< 0,15 ist. Dazu soll die Nullhypothese H0: p=0,15 mit einer zufälligen Stichprobe (praktisch als Zufallsexperiment) der Größe n=56 verworfen werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 1% betragen.In welchem Bereich muss die Anzahl der Treffer bei der Stichprobe liegen, um das gewünschte Ergebnis zu erhalten? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00.0001
10.0012
20.0066
30.0236
40.0633
50.1362
60.2456
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.15 zu verwerfen. Der Test soll bestätigen, dass p<0.15 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(56,0.15,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 2 weniger als 1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.15 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.15 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0066 =0.66% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;2]

Nicht-Ablehnungsbereich von H0: [3;56]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;2], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [3;56], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtseitig

Beispiel:

In einem Multiple Choice Test ist bei jeder der 75 Aufgaben genau eine von fünf Lösungsmöglichkeiten richtig. In welchem Intervall muss die Anzahl der richtigen Antworten von Kevin liegen, damit er seiner Mutter (mit einer max. Irrtumswahrscheinlichkeit von 5%) nachweisen kann, dass er auf den Test etwas gelernt und dadurch etwas gewusst hat und nicht jede Frage dem Zufall überließ? Gib die Irrtumswahrscheinlichkeit an!

Lösung einblenden
kP(X≤k)
......
160.6759
170.769
180.844
190.9003
200.9397
210.9655
220.9813
230.9904
240.9953
250.9979
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.2 zu verwerfen. Der Test soll bestätigen, dass p>0.2 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.05= 0.95 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(75,0.2,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 21 erstmals mindestens 95% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;21]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 22 Treffern beginnt.

Ablehnungsbereich von H0: [22;75]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.2 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.2 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0345 =3.45% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [22;75], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;21], so muss die Nullhypothese beibehalten werden.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test linksseitig

Beispiel:

Ein Basketballspieler behauptet, er habe bei Freiwürfen eine Trefferwahrscheinlichkeit von p=0,35. Sein Trainer glaubt, dass er sich dabei überschätzt. Um das zu überprüfen, muss der Basketballspieler 35 mal werfen. In welchem Intervall müssen die Treffer liegen, dass sich der Trainer auf einem Signifikanzniveau von 0,1% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit.

Lösung einblenden
kP(X≤k)
00
10
20.0001
30.0003
40.0016
50.0058
60.017
70.0419
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.35 zu verwerfen. Der Test soll bestätigen, dass p<0.35 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(35,0.35,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 3 weniger als 0.1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.35 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.35 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0003 =0.03% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;3]

Nicht-Ablehnungsbereich von H0: [4;35]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;3], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [4;35], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikament unter p=0,14 gesunken ist. Um dies nachzuweisen, soll ein 87-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. a) In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? b) In Wirklichkeit liegt die Wahrscheinlickeit für Nebenwirkungen bei p=0,07. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Nebenwirkungen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
......
10
20.0002
30.0011
40.0043
50.0127
60.0315
70.067
80.1247
90.2071
100.3118
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.14 zu verwerfen. Der Test soll bestätigen, dass p<0.14 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(87,0.14,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 6 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.14 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.14 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0315 =3.15% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;6]

Nicht-Ablehnungsbereich von H0: [7;87]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;6], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [7;87], so muss die Nullhypothese beibehalten werden.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p=0.14 falsch, weil ja in Wirklichkeit p=0.07 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 7 bis 87, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.07) beträgt nun: P0.0787 (X7) =1- P0.0787 (X6) ≈ 1-0.5914 ≈ 0.4086

Mit 40.86% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.

Fehler 1. Art beurteilen

Beispiel:

Eine große Handelskette überlegt, ob sie eine Kunden-App entwickeln und einführen soll. Die Finanzabteilung hat dabei herausgefunden, dass sich die Entwicklung und Bewerbung solch einer App nur dann rechnet, wenn sich auch mindestens 55% der Kunden die App aufs Smartphone installiert. Deswegen beschließt die Geschäftsführung einen Hypothesentest in Form einer Befragung von 600 Kunden durchzuführen. Dabei soll das Risiko auf 18% begrenzt werden, dass aufgrund des Tests die App entwickelt wird, obwohl sich diese Investition wirtschaftlich nicht lohnen wird.

Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.

Lösung einblenden

Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:

1. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 18%

error

Die Nullhypothese H0: " ... höchstens 18%", also p ≤ 0.18 macht keinen Sinn, weil die 18%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=55% gehen, also den Prozentsatz der Kunden, die die App installieren werden.

2. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 18%

error

Die Nullhypothese H0: " ... mindestens 18%", also p ≥ 0.18 macht keinen Sinn, weil die 18%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=55% gehen, also den Prozentsatz der Kunden, die die App installieren werden.

3. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 55%

error

Wenn die Nullhypothese H0: " ... mindestens 55%", also p ≥ 0.55 lautet, soll ja der Test "bestätigen", dass p < 0.55 ist - also ist es ein linksseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungesbreich kleiner als das Signifikanzniveau α = 18% sein muss, falls die Nullhypothese H0: p ≥ 0.55 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≥ 0.55 abzulehnen, obwohl es stimmt, ist somit kleiner als 18%.

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.55 irrtümlicherweise abzulehnen, damit p < 0.55 anzunehmen (obwohl dies falsch ist), und somit die App gar nicht zu entwickeln, obwohl dies wirtschaftlich sinnvoll wäre, auf unter 18% begrenzt werden könnte.

Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

4. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 55%

ok

Wenn die Nullhypothese H0: " ... höchstens 55%", also p ≤ 0.55 lautet, soll ja der Test "bestätigen", dass p > 0.55 ist - also ist es ein rechtseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungesbreich kleiner als das Signifikanzniveau α = 18% sein muss, falls die Nullhypothese H0: p ≤ 0.55 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≤ 0.55 abzulehnen, obwohl es stimmt, ist somit kleiner als 18%

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.55 irrtümlicherweise abzulehnen, damit p > 0.55 anzunehmen (obwohl dies falsch ist), und somit die App zu entwickeln und zu bewerben, obwohl die Kosten nie wieder eingebracht werden, weil zu wenige Kunden die App installieren werden, auf unter 18% begrenzt werden könnte.

Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

zweiseitiger Test

Beispiel:

Ein Würfel wirkt etwas unwuchtig, so als ob nicht alle Bereiche des Körpers gleich schwer wären. Deswegen wird vermutet, dass die Wahrscheinlichkeit, eine Sechs mit diesem Würfel zu würfeln, p ≠ 1 6 sein müsste. Diese Vermutung soll durch einen zweiseitigen Test mit 93 mal würfeln untermauert werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 0,1% betragen.
In welchen Bereichen muss die Anzahl der gewürfelten Sechser bei der Stichprobe liegen, um die Nullhypothese p= 1 6 statistisch untermauert ablehnen zu können?
Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
......
30.0001
40.0003
50.001
60.0031
70.0083
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = 1 6 zu verwerfen. Der Test soll bestätigen, dass p< 1 6 oder p> 1 6 ist, es ist ein zweiseitiger Hypothesentest.

Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Dazu teilen wir das Signifikanzniveau 0.1% gerecht auf 0.05% auf der linken und 0.05% auf der rechten Seite.

Linke Seite:

Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=93 und p= 1 6 ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 4 gerade noch weniger als 0.05% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs

kP(X≤k)
......
260.9979
270.9991
280.9996
290.9998
300.9999
......

Rechte Seite:

Auch am rechten Rand darf der Ablehnungsbereich höchstens 0.05% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.0005 = 0.9995 als Wahrscheinlichkeit haben muss.

In der Tabelle links erkennt man, dass bei k=28 erstmals P 1 6 93 (Xk) ≥ 0.9995 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 29 bis 93 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 0.05% hat.

Der Ablehnungsbereich auf der rechten Seite ist somit von 29 bis 93.

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p= 1 6 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠ 1 6 als statistisch abgesichert betrachten darf.

Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von P 1 6 93 (X4) = 0.0003 auf der linken Seite und P 1 6 93 (X29) = 1-0.9996 = 0.0004 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit PIrr = 0.0003 + 0.0004 = 0.0007 =0.07% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;4] und [29;93]

Nicht-Ablehnungsbereich von H0: [5;28]

Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;4] oder [29;93], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [5;28], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)