Aufgabenbeispiele von LGS
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Wert zum Einsetzen finden
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme x so, dass (x|3) eine Lösung dieser Gleichung ist.
Man setzt einfach y = 3 in die Gleichung ein und erhält:
=
Jetzt kann man die Gleichung nach x auflösen:
= | |||
= | | | ||
= | |: | ||
= |
Die Lösung ist somit: (3|3)
Wert zum Einsetzen finden (offen)
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme eine mögliche Lösung (x|y) dieser Gleichung ist.
Eine (der unendlich vielen) Lösungen wäre beispielsweise: (-2|-1)
denn
3⋅
Eine weitere Lösung wäre aber auch: (-1|-4)
denn 3⋅
Oder : (-3|2)
denn 3⋅
LGS (1 Var. schon aufgelöst)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung gar kein y mehr da ist.
Deswegen können wir diese Zeile sehr einfach nach x umstellen:
|
= |
|
|: |
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das x
durch
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Somit haben wir eine Lösung für y.
Für x haben wir die Lösung ja oben schon erhalten: x =
Die Lösung des LGS ist damit: (-1|1)
LGS (1 Var. ohne Koeff.)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
= |
|
|
|
= |
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = 1
Die Lösung des LGS ist damit: (-1|1)
LGS (Standard)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem x ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach x umstellt:
|
= |
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das x
durch (
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Somit haben wir eine Lösung für y.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
x =
=
=
also
x = 6
Die Lösung des LGS ist damit: (6|-6)
LGS (vorher umformen)
Beispiel:
Löse das lineare Gleichungssystem:
| = | | (I) | ||
| = | (II) |
Zuerst formen wir die beiden Gleichungen so um, dass links nur noch die Variablen und rechts nur noch die Zahlenwerte stehen:
| = |
|
(I) | ||
| = | (II) |
| = |
|
| +
| (I) | |
| = | |
| (II) |
Wir stellen die 1. Gleichung nach y um:
|
= |
|
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
also
y = 6
Die Lösung des LGS ist damit: (1|6)
LGS zu Lösungen finden
Beispiel:
Finde ein lineares Gleichungssystem, bei dem x = -1 und y = 3 Lösungen sind.
Dabei darf keiner der Koeffizienten =0 sein.
Eigentlich kann man die Koeffizienten vor x und y frei wählen, z.B.:
1x
-3x
Jetzt muss man einfach die Lösungen x = -1 und y = 3 einsetzen und ausrechnen:
1x
-3x
So erhält mam als eine von unendlich vielen Lösungen:
1x
-3x
LGS Lösungsvielfalt erkennen
Beispiel:
Bestimme die Lösungsmenge:
Wir stellen die 1. Gleichung nach y um:
|
= |
|
|
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
= |
|
|
|
= |
|
|
|
= |
|
|⋅ 3 |
|
= |
|
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = 3
Die Lösung des LGS ist damit: (-1|3)
LGS Anwendungen
Beispiel:
Carola war 4 Stunden wandern. Danach hat sie 4 Schokobonbons gegessen. Als sie diese Werte in ihre Fitness-App einträgt, meldet diese, dass sie durch beide Aktionen zusammen 380 kcal Energie verbraucht hätte. Am Tag zuvor war sie 4 Stunden wandern und hat 3 Schokobonbons gegessen, wofür ihre Fitness-App einen Ernergieverbrauch von 435 kcal berechnete. Wie viele kcal verliert man bei einer Stunde Wandern, wie viel kcal hat ein Schokobonbon?
Wir bezeichnen x als kcal-Verbrauch bei einer Stunde Wandern und y als kcal eines Schokobonbons und
Aus den Sätzen der Aufgabenstellung ergibt sich somit folgendes lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
= |
|
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
= |
|
|
|
= |
|
|
|
= |
|
|
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
also
y = 55
Die Lösung des LGS ist damit: (150|55)
Bezogen auf die Anwendungsaufgabe ergibt sich nun als Lösung:
kcal-Verbrauch bei einer Stunde Wandern (x-Wert): 150
kcal eines Schokobonbons (y-Wert): 55