Aufgabenbeispiele von 2. Strahlensatz
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
2. Strahlensatz (gleiche Seite)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |||
| = | |⋅ 9 | ||
| = |
2. Strahlensatz (2 Seiten)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 18.2 | ||
| = |
2. Strahlensatz (3 Segmente)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x und y.
Wir betrachten zuerst den Teil rechts vom Zentrum.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |||
| = | |⋅ 6 | ||
| = |
Nun betrachten wir den Teil links vom Zentrum.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 6 | ||
| = |
doppelter Strahlensatz (klein)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x und y.
Nach dem 1. Strahlensatz gilt:
=
D=R\{
| = | |||
| = |
Wir multiplizieren den Nenner weg!
| = | |⋅( ) | ||
| = | |||
| = |
| = | | | ||
| = | |:() | ||
| = |
(Alle Lösungen sind auch in der Definitionsmenge).
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 14.4 | ||
| = |
Strahlensatz Anwendungen
Beispiel:

Die Grundfläche einer senkrechten quadratischen Pyramide ist b=28 m lang. Die Länge der Seitenkanten ist l=21 m. Die Pyramide wird parallel zur Grundfläche abgetragen, so dass ein Pyramidenstumpf entsteht. Die Länge der Seitenkanten l verkürzt sich dadurch von 21 auf 9 m. Wie breit ist dann die quadratische Fläche der Oberseite des entstehenden Pyramidenstumpfs?

Wenn man in die Skizze ein paar Strecken einzeichnet, erkennt man eine Strahlensatzfigur:
Dabei gilt nach dem 2. Strahlensatz:
= bzw. =
Aus dem Text können wir herauslesen:
l = l2 + l1 =21
l1 = 9
l2 = 12
b = 28
Gesucht ist die Breite der neuen Oberseite. Wir wählen also b2 als x.
Jetzt können wir die Werte in die obige Strahlensatzgleichung einsetzen und erhalten:
=
| = | |||
| = | |⋅ 28 | ||
| = |
b2 ist also .
Die Lösung ist somit: 16
