Aufgabenbeispiele von 2. Strahlensatz
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
2. Strahlensatz (gleiche Seite)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |||
| = | |⋅ 6 | ||
| = |
2. Strahlensatz (2 Seiten)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 3.5 | ||
| = |
2. Strahlensatz (3 Segmente)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x und y.
Wir betrachten zuerst den Teil rechts vom Zentrum.
Nach dem 2. Strahlensatz gilt:
=
D=R\{
| = | |||
| = |
Wir multiplizieren den Nenner weg!
| = | |⋅( ) | ||
| = | |||
| = |
| = | |⋅ 5 | ||
| = | |||
| = | | | ||
| = | |:() | ||
| = |
(Alle Lösungen sind auch in der Definitionsmenge).
Nun betrachten wir den Teil links vom Zentrum.
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 10 | ||
| = |
doppelter Strahlensatz (klein 2)
Beispiel:
Die beiden blauen Geraden sind parallel.
Berechne x und y.
Nach dem 1. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 27 | ||
| = |
Nach dem 2. Strahlensatz gilt:
=
| = | |||
| = | |⋅ 7 | ||
| = |
Strahlensatz Anwendungen
Beispiel:

Der Durchmesser der Grundfläche eines Kegels beträgt d=19,2 cm. Der Kegel soll nun durch einen zur Grundfläche parallelen Schnitt unterteilt werden. Die Schnittfläche hat dabei den Durchmesser 8 cm. Der untere Teil (Kegelstumpf) hat dann eine Höhe von 19,6 cm.Wie hoch ist dann der obere Teilkegel?

Wenn man in die Skizze ein paar Strecken einzeichnet, erkennt man eine Strahlensatzfigur:
Dabei gilt nach dem 2. Strahlensatz:
= bzw. =
Aus dem Text können wir herauslesen:
h1 = 19.6
r2 = 4
r1 = 9.6 (Die Hälfte von 19.2)
Gesucht ist die Höhe des oberern Teilkegels. Wir wählen also h2 als x.
Jetzt können wir die Werte in die obige Strahlensatzgleichung einsetzen und erhalten:
=
D=R\{
| = | |||
| = |
Wir multiplizieren den Nenner weg!
| = | |⋅( ) | ||
| = | |||
| = |
| = | | | ||
| = | |:() | ||
| = |
(Alle Lösungen sind auch in der Definitionsmenge).
h2 ist also .
Die Lösung ist somit: 14
