Aufgabenbeispiele von am Schaubild ohne Stammfkt.

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hoch- und Tiefpkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f '. Bestimme jeweils Typ und den x-Wert aller Extrempunkte des Graphen von f im abgebildeten Bereich.

Lösung einblenden

Da Extrempunkte immer eine waagrechte Tangente haben, gilt die notwendige Bedingung f '= 0, wir suchen also die Nullstellen der Ableitungsfunktion f '.

Um beurteilen zu können, ob es sich um einen Hochpunkt des Graphen von f, um eine Tiefpunkt oder keines von beidem (Sattelpunkt) handelt, kann man jeweils den Vorzeichenwechsel (VZW) der Funktion f ' anschauen (hinreichende Bedingung).

Wir untersuchen also alle Nullstellen der abgebildeten Ableitungsfunktion f '.

Wir erkennen bei x = 4 einen VZW in der Funktion f ' von + nach -. Also muss der Graph der Originalfunktion f bei x = 4 einen Hochpunkt haben.

Wendepunkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme alle Wendestellen von f im abgebildeten Bereich.
(die gesuchten x-Werte sind alle ganzzahlig)

Lösung einblenden

Da Wendestellen immer Extremstellen der Ableitung sind, müssen wir in der Abbildung nur nach den Extremstellen von f ' suchen.

Diese erkennen wir leicht bei x = 2.

Monotonie (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme möglichst große Intervalle, auf denen f monoton steigend, bzw. monoton fallend ist .

Lösung einblenden

Nach dem Monotoniesatz genügt es die Intervalle zu finden, in denen die Ableitungsfunktion f ', positiv bzw. negativ ist.

Wir erkennen: Im Intervall [-6;-2] gilt: f '(x) ≤ 0, also ist f monoton fallend.

Wir erkennen: Im Intervall [-2;1] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Wir erkennen: Im Intervall [1;3] gilt: f '(x) ≤ 0, also ist f monoton fallend.

Wir erkennen: Im Intervall [3;6] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Extrempunkte der Ableitung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f'. Bestimme jeweils Typ und den x-Wert der Extrempunkte von f'' im abgebildeten Bereich.
(Die Lösungen sind ganzzahlig)

Lösung einblenden

Man erkennt am Graph von f', dass bei x = -3 eine maximale Steigung (m ≈ 4) ist. Dort hat also f'', die Ableitungsfunktion von f', einen Hochpunkt.

Bei x = -1 ist dagegen ein maximales Gefälle (m ≈ -4) in f', also ein Tiefpunkt in f'' zu erkennnen.

Minimaler Grad bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f.

Gezeichnet ist der Graph von f.

Wie groß muss der Grad von f mindestens sein?

Lösung einblenden

Man erkennt am Graph von f 2 Extrempunkte, also muss f' ( - die Ableitung von f - ) mindestens 2 Nullstellen und somit auch mindestens Grad 2 haben.

Weil bei ganzrationalen Funktionen mit jedem Ableiten der Grad um 1 verringert wird, muss der Grad der Originalfunktion f um 1 höher, also f vom Grad 3 sein.

Pkt mit paralleler Tangente (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f ', also der Ableitungsfunktion einer Funktion f.
Bestimme eine Stelle x, an der die Tangente an den Graph von f parallel zur Geraden g: y= -x +2 verläuft.

Lösung einblenden

Die Steigung der Tangente an den Graph von f, kurz die Tangentensteigung von f, ist f ', die Ableitung von f.

Da die Gerade g die Steigung -1 hat, muss die parallele Tangente auch die Steigung m = -1 haben. Es muss also f '(x) = -1 gelten.

Am Schaubild kann man f '(1) = -1 und f '(-1) = -1 ablesen.

Die gesuchten Stellen sind also x1 = 1 und x2 = -1.

Summe f(x) und f'(x) (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(0) + f '(0).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(0) = 0 entnehmen.

Außerdem können wir natürlich f(0) = -1 am Schaubild ablesen:

Also gilt: f(0) + f '(0) = -1 + 0 = -1.

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-2).

Lösung einblenden

Wir können der Zeichnung rechts f(-2) = 0 entnehmen.

Also gilt h(-2) = g(f(-2)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(-2) = g(f(-2)) = g(0) = 3.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(3|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(3)
Wegen -1 = h(x)= g(f(x))= g(3) gilt also f(x) = 3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =3 sind.

Diese erkennen wir bei Q1(-3|3) und Q2(1|3), also bei
x1 = -3 und x2 = 1

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 0 entnehmen.

Wir suchen also f(f '(1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(0) = 1 .

Produktregel am Schaubild

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(x)⋅g(x).
Bestimme h(1) und h'(1).

Lösung einblenden

Wir können der Zeichnung rechts f(1) = -1 und g(1) = -1 entnehmen.

Also gilt h(1)= f(1)⋅g(1) = ( - 1 )( - 1 ) = 1

Für die Ableitung h'(x) gilt nach der Produktregel h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x)

Also h'(1) = f'(1)⋅g(1) + f(1)⋅g'(1)

Da ja g (in blau gezeichnet) die Tangente an f in x=1 ist, können wir am Graph von g sowohl f'(1) als auch g'(1) als Steigung m=2 der Geraden ablesen, also gilt f'(1) = g'(1) = 2.

Somit gilt:
h'(1) = f'(1)⋅g(1) + f(1)⋅g'(1)
= 2( - 1 ) + ( - 1 )2
= -4.

Summe f(x) und f'(x) (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(-1) + f '(-1).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(-1) = 0 entnehmen.

Außerdem können wir natürlich f(-1) = -4 am Schaubild ablesen:

Also gilt: f(-1) + f '(-1) = -4 + 0 = -4.