Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-2).
Mit Hilfe von b=1 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
≈
. .
Weil das gesuchte Interval [0; ) zwei Perioden umfasst, ist auch noch = eine Lösung.
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über -2, also bei y=0.
Wir erhalten also als Ergebnis einen Hochpunkt bei ( |0) und einen bei ( |0)
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=2 in y-Richtung verschoben ist.
Der erste Hochpunkt wäre also im Punkt P(0|2).
Mit Hilfe von b=2 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1=
≈
. und bei x2=
≈
. .
Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Wendepunkt ist also gerade 2.
Wir erhalten also als Ergebnis einen Wendepunkt bei ( |2) und einen bei ( |2)
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in y-Richtung und um c= nach rechts verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P( |-3).
Mit Hilfe von b=2 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
+
≈
.
Weil diese Stelle aber negativ ist, müssen wir noch (mindestens) eine Periode dazu addieren,
damit der x-Wert im gesuchten Intervall [0;
) liegt,
also x1=
≈
.
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über -3, also bei y=-1.
Wir erhalten also als Ergebnis einen Hochpunkt bei ( |-1)
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit innerhalb einer Periode, also im Intervall [0; [.
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
| = | |: |
| = | |cos-1(⋅) |
Der WTR liefert nun als Wert 2.0943951023932
1. Fall:
| = | |⋅ 4 | ||
| x1 | = |
Am Einheitskreis erkennen wir, dass die Gleichung = noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
+2π=
liegen muss.
2. Fall:
| = | |⋅ 4 | ||
| x2 | = |
L={ ; }
Die Nullstellen in der Periode [0;
) sind also
bei x1 =
und x2 =
.
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit (0 < t ≤ 60) angeben.
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 20,8 m?
- Zu welcher Zeit (in s) gewinnt die Gondel am stärksten an Höhe?
- Zu welcher Zeit (in s) ist die Gondel am höchsten?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b = herauslesen und in die Periodenformel einsetzen:
Somit gilt für die Periodenlänge: p = = = 60
- t-Werte mit f(t) ≥ 20.8
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 20.8 hat. Wir setzen also den Funktionsterm mit 20.8 gleich:
= 20.811 ⋅ sin ( 1 30 π ( t - 10 ) ) + 12 11 ⋅ sin ( 0,1047 t - 1,0472 ) + 12 = 20,8 | - 12 11 ⋅ sin ( 0,1047 t - 1,0472 ) = 8,8 |: 11 sin ( 0,1047 t - 1,0472 ) = 0,8 |sin-1(⋅) Der WTR liefert nun als Wert 0.92729521800161
1. Fall:
0,1047 x - 1,0472 = 0,927 | + 1,0472 0,1047 x = 1,9742 |: 0,1047 x1 = 18,8558 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,1047 t - 1,0472 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.8 schneidet den Einheitskreis in einem zweiten Punkt).0,8 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,927 liegen muss.2,214 2. Fall:
0,1047 x - 1,0472 = 2,214 | + 1,0472 0,1047 x = 3,2612 |: 0,1047 x2 = 31,148 Da die Sinus-Funktion ja um 10 nach rechts verschoben ist, startet sie nach 10 s nach oben und erreicht erstmals nach 18.86 s den Wert 20.8. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 31.15 s zum zweiten mal den Wert 20.8 erreicht. Während dieser 31.15 - 18.86 = 12.29 s ist der Wert der Funktion also höher als 20.8.
- t-Wert beim stärksten Zuwachs
Gesucht ist die Stelle mit der größten Zunahme, also der maximalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der positiven Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer zu Beginn der Periode, also nach 0 s.
Die Sinusfunktion ist aber auch noch um 10 nach rechts verschoben, d.h. sie startet auch erst bei t = 10 s mit ihrer Periode. Somit erreicht sie ihren steigenden Wendepunkt nach 10 s. Die Lösung ist also: 10 s.
- t-Wert des Maximums (HP)
Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 15 s.
Die Sinusfunktion ist aber auch noch um 10 nach rechts verschoben, d.h. sie startet auch erst bei t = 10 s mit ihrer Periode. Somit erreicht sie ihren Hochpunkt nach 15 + 10 s = 25 s. Die Lösung ist also: 25 s.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Kosiniusfunktion hat ja seinen ersten Tiefpunkt immmer nach einer
Wegen des Minus vor dem Kosinius wird ja aber der Graph an der x-Achse gespiegelt, so dass der Tiefpunkt zum
Hochpunkt wird. Also ist hier der erste Hochpunkt nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von
