Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-3).
Mit Hilfe von b=2 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
≈
. und bei x2=
≈
. .
Weil das gesuchte Interval [0; ) zwei Perioden umfasst, ist auch noch = und = eine Lösung.
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Wendepunkt ist also gerade -3.
Wir erhalten also als Ergebnis einen Wendepunkt bei ( |-3) und einen bei ( |-3) und einen bei ( |-3) und einen bei ( |-3)
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|0).
Weil aber das Vorzeichen von a = -3 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 3 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|0) wird.
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Hochpunkt ist also eine Amplitude (a=3) über 0, also bei y=3.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=sin(x)
nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P
ein fallender Wendepunkt in P(
Mit Hilfe von b=
p=
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über -3, also bei y=-1.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 2.0943951023932
1. Fall:
|
|
= |
|
|: |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
|
= |
|
|: |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit
- Wie lange (in Tagen) haben die Tage eine Länge von mindestens 12,9 h?
- Bestimme die maximale Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h).
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- t-Werte mit f(t) ≥ 12.9
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 12.9 hat. Wir setzen also den Funktionsterm mit 12.9 gleich:
= 12.94,5 ⋅ sin ( 1 183 π ( t - 50 ) ) + 12 4,5 ⋅ sin ( 0,0172 t - 0,8584 ) + 12 = 12,9 | - 12 4,5 ⋅ sin ( 0,0172 t - 0,8584 ) = 0,9 |: 4,5 sin ( 0,0172 t - 0,8584 ) = 0,2 |sin-1(⋅) Der WTR liefert nun als Wert 0.20135792079033
1. Fall:
0,0172 x - 0,8584 = 0,201 | + 0,8584 0,0172 x = 1,0594 |: 0,0172 x1 = 61,593 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,0172 t - 0,8584 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.2 schneidet den Einheitskreis in einem zweiten Punkt).0,2 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,201 liegen muss.2,94 2. Fall:
0,0172 x - 0,8584 = 2,94 | + 0,8584 0,0172 x = 3,7984 |: 0,0172 x2 = 220,8372 Da die Sinus-Funktion ja um 50 nach rechts verschoben ist, startet sie nach 50 d nach oben und erreicht erstmals nach 61.59 d den Wert 12.9. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 220.84 d zum zweiten mal den Wert 12.9 erreicht. Während dieser 220.84 - 61.59 = 159.25 d ist der Wert der Funktion also höher als 12.9.
- y-Wert des Maximums (HP)
Gesucht ist der höchste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 4.5 erkennen, d.h. f schwingt um maximal 4.5 um 12. Somit ist der höchste Wert bei 12 h + 4.5 h = 16.5 h.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Kosiniusfunktion hat ja seinen ersten Wendepunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von
