Aufgabenbeispiele von Trigonometrie

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ableiten von trigonometrischen Funktionen

Beispiel:

Berechne die Ableitung von f mit f(x)= -5 x 2 · sin( -x ) und vereinfache:

Lösung einblenden

f(x)= -5 x 2 · sin( -x )

f'(x)= -5 · 2x · sin( -x ) -5 x 2 · cos( -x ) · ( -1 )

= -10 x · sin( -x ) -5 x 2 · ( - cos( -x ) )

= -10 x · sin( -x ) +5 x 2 · cos( -x )

Ableiten von trigonometrischen Funktionen BF

Beispiel:

Berechne die Ableitung von f mit f(x)= -5 x 2 · cos( -3x ) und vereinfache:

Lösung einblenden

f(x)= -5 x 2 · cos( -3x )

f'(x)= -5 · 2x · cos( -3x ) -5 x 2 · ( - sin( -3x ) · ( -3 ) )

= -10 x · cos( -3x ) -5 x 2 · 3 sin( -3x )

= -10 x · cos( -3x ) -15 x 2 · sin( -3x )

Integral über trigon. Funktion

Beispiel:

Bestimme das Integral 1 2 π 3 2 π 4 cos( 2x ) x .

Lösung einblenden
1 2 π 3 2 π 4 cos( 2x ) x

= [ 2 sin( 2x ) ] 1 2 π 3 2 π

= 2 sin( 2( 3 2 π ) ) -2 sin( 2( 1 2 π ) )

= 20 -20

= 0+0

= 0

Extrempunkte bei trigon. Fktn. BF (einfach)

Beispiel:

Bestimme die Tiefpunkte des Graphen von f mit f(x)= 3 sin( 1 2 x ) +1 im Intervall [0; 8π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.

Der erste steigender Wendepunkt wäre also im Punkt P(0|1).

Mit Hilfe von b= 1 2 und der Periodenformel p= b erhalten wir als Periode:
p= 1 2 = 4π

Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1= 3π 3π . .

Weil das gesuchte Interval [0; 8π ) zwei Perioden umfasst, ist auch noch 3π+4π = 7π eine Lösung.

Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=3) unter 1, also bei y=-2.

Wir erhalten also als Ergebnis einen Tiefpunkt bei ( 3π |-2) und einen bei ( 7π |-2)

Extrempunkte bei trigonometr. Fktn. BF

Beispiel:

Bestimme die Hochpunkte des Graphen von f mit f(x)= -2 sin( 1 3 x ) -2 im Intervall [0; 12π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in y-Richtung verschoben ist.

Der erste steigender Wendepunkt wäre also im Punkt P(0|-2).

Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|-2) wird.

Mit Hilfe von b= 1 3 und der Periodenformel p= b erhalten wir als Periode:
p= 1 3 = 6π

Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion -2 sin( 1 3 ( x +0)) -2 aber nach Dreiviertel der Periode,
also bei x1= 9 2 π 9 2 π . .

Weil das gesuchte Interval [0; 12π ) zwei Perioden umfasst, ist auch noch 9 2 π+6π = 21 2 π eine Lösung.

Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über -2, also bei y=0.

Wir erhalten also als Ergebnis einen Hochpunkt bei ( 9 2 π |0) und einen bei ( 21 2 π |0)

Extremstellen bei trigon. Fktn (LF)

Beispiel:

Bestimme die Tiefpunkte des Graphen von f mit f(x)= 2 cos( 1 3 ( x -2 )) -2 im Intervall [0; 12π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-2 in y-Richtung und um c= 2 nach rechts verschoben ist.

Der erste Hochpunkt wäre also im Punkt P( 2 |0).

Mit Hilfe von b= 1 3 und der Periodenformel p= b erhalten wir als Periode:
p= 1 3 = 6π

Der gesuchte Tiefpunkt ist bei cos(x) nach der Hälfte der Periode,
also bei x1= 2 + 3π 11,425 . .

Weil das gesuchte Interval [0; 12π ) zwei Perioden umfasst, ist auch noch 11,425 +6π ≈ 30.275 eine Lösung.

Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter -2, also bei y=-4.

Wir erhalten also als Ergebnis einen Tiefpunkt bei ( 11,425 |-4) und bei (30.275|-4)

Nullstellen mit dem WTR

Beispiel:

Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit f(x)= -3 cos( x ) +2,4 innerhalb einer Periode, also im Intervall [0; 2π [.

Lösung einblenden

Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.

Daraus ergibt sich folgende Gleichung:

-3 cos( x ) +2,4 = 0 | -2,4
-3 cos( x ) = -2,4 |:-3
canvas
cos( x ) = 0,8 |cos-1(⋅)

Der WTR liefert nun als Wert 0.64350110879328

1. Fall:

x1 = 0,644

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,8 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.8 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,644
bzw. bei - 0,644 +2π= 5,64 liegen muss.

2. Fall:

x2 = 5,64

L={ 0,644 ; 5,64 }

Die Nullstellen in der Periode [0; 2π ) sind also
bei x1 = 0,644 und x2 = 5,64 .

trigon. Anwendungsaufgabe 2

Beispiel:

An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit f(t)= 5 sin( 1 183 π ( t -60 )) +12 (0 ≤ t ≤ 366) angeben.

  1. Bestimme die kürzeste Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h)
  2. Wie lange (in Tagen) haben die Tage eine Länge von mindestens 13 h?
  3. Wie viele Tage nach Beobachtungsbeginn werden die Tage am schnellsten kürzer?
  4. Wie viele Tage nach Beobachtungsbeginn ist der Tag am längsten?

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Aus dem Funktionsterm können wir den Faktor b = 1 183 π herauslesen und in die Periodenformel einsetzen:

Somit gilt für die Periodenlänge: p = 2 π b = 2 π 1 183 π = 366

  1. y-Wert des Minimums (TP)

    Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 5 erkennen, d.h. f schwingt um maximal 5 um 12. Somit ist der tiefste Wert bei 12 h - 5 h = 7 h.

  2. t-Werte mit f(t) ≥ 13

    Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 13 hat. Wir setzen also den Funktionsterm mit 13 gleich:

    5 sin( 1 183 π ( t -60 )) +12 = 13

    5 sin( 0,0172t -1,03 ) +12 = 13 | -12
    5 sin( 0,0172t -1,03 ) = 1 |:5
    canvas
    sin( 0,0172t -1,03 ) = 0,2 |sin-1(⋅)

    Der WTR liefert nun als Wert 0.20135792079033

    1. Fall:

    0,0172x -1,03 = 0,201 | +1,03
    0,0172x = 1,231 |:0,0172
    x1 = 71,5698

    Am Einheitskreis erkennen wir, dass die Gleichung sin( 0,0172t -1,03 ) = 0,2 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.2 schneidet den Einheitskreis in einem zweiten Punkt).

    Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,201 = 2,94 liegen muss.

    2. Fall:

    0,0172x -1,03 = 2,94 | +1,03
    0,0172x = 3,97 |:0,0172
    x2 = 230,814

    Da die Sinus-Funktion ja um 60 nach rechts verschoben ist, startet sie nach 60 d nach oben und erreicht erstmals nach 71.57 d den Wert 13. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 230.81 d zum zweiten mal den Wert 13 erreicht. Während dieser 230.81 - 71.57 = 159.24 d ist der Wert der Funktion also höher als 13.

  3. t-Wert bei der stärksten Abnahme

    Gesucht ist die Stelle mit der größten Abnahme, also der minimalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der negativen Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer genau nach einer halben Periode, also nach 183 d.

    Die Sinusfunktion ist aber auch noch um 60 nach rechts verschoben, d.h. sie startet auch erst bei t = 60 d mit ihrer Periode. Somit erreicht sie ihren fallenenden Wendepunkt nach 183 + 60 d = 243 d. Die Lösung ist also: 243 d.

  4. t-Wert des Maximums (HP)

    Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 91.5 d.

    Die Sinusfunktion ist aber auch noch um 60 nach rechts verschoben, d.h. sie startet auch erst bei t = 60 d mit ihrer Periode. Somit erreicht sie ihren Hochpunkt nach 91.5 + 60 d = 151.5 d. Die Lösung ist also: 151.5 d.

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x +2 ) ( x +4 ) x +2

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +2 = 0 | -2
x = -2

also Definitionsmenge D=R\{ -2 }

Wir untersuchen das Verhalten für x → -2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +2) erkennen, die wir dann kürzen können:

( x +2 ) ( x +4 ) x +2 = ( x +2 ) ( x +4 ) x +2 = x +4

Für x → -2 ⇒ f(x)= ( x +2 ) ( x +4 ) x +2 = x +4 -2 +4 = 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-2 | 2 )


Parameter für best. Periode finden

Beispiel:

Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit fa(x)= -3 sin( ( a 2 +2a +4 )x ) gibt.

Bestimme das zugehörige a und die extremale Periode.

Lösung einblenden

Wir berechnen zuerst die Periode von fa mit fa(x)= -3 sin( ( a 2 +2a +4 )x ) :

p = b = a 2 +2a +4

Man erkennt jetzt gut, dass je größer a 2 +2a +4 wird, desto kleiner wird die Periode.

a 2 +2a +4 ist eine quadratische Funktion, ihr Graph ist eine nach oben geöffnete Parabel mit einem Tiefpunkt als Scheitel. Somit hat a 2 +2a +4 also einen minimalen Wert, während es noch oben keine Grenze gibt.

Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:

( a 2 +2a +4 )' = 2a +2 = 0 ⇔ a = -1

Für dieses a = -1 wird also a 2 +2a +4 minimal und somit die Periode 2π a 2 +2a +4 maximal .

Für a = -1 ist dann die maximale Periode pmax = 2π ( -1 ) 2 +2( -1 ) +4 = 2π 1 -2 +4 = 2 3 π .