Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Integral über trigon. Funktion
Beispiel:
Bestimme das Integral .
=
=
=
=
=
≈ 1,333
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=1) unter 1, also bei y=0.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|1) wird.
Mit Hilfe von b=3 und der Periodenformel p=
p=
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über 1, also bei y=3.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=3 in
y-Richtung und um c=
Der erste Hochpunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=cos(x)
nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem Hochpunkt in P
ein Tiefpunkt in P(
Mit Hilfe von b=3 und der Periodenformel p=
p=
Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1=
Weil diese Stelle aber größer als die Periode ist, müssen wir noch (mindestens) eine
Periode davon abziehen, damit der x-Wert in der ersten Periode liegt,
also x2=
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Wendepunkt ist also gerade 3.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |sin-1(⋅) |
Der WTR liefert nun als Wert -0.92729521800161
Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen,
addieren wir einfach noch 2π dazu und erhalten so
1. Fall:
|
|
= |
|
|: |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt,
also π -
2. Fall:
|
|
= |
|
|: |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 24,4 m?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
herauslesen und in die Periodenformel einsetzen:1 60 π Somit gilt für die Periodenlänge: p =
=2 π b = 1202 π 1 60 π - t-Werte mit f(t) ≥ 24.4
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 24.4 hat. Wir setzen also den Funktionsterm mit 24.4 gleich:
= 24.418 ⋅ sin ( 1 60 π ( t - 20 ) ) + 19 18 ⋅ sin ( 0,0524 t - 1,0472 ) + 19 = 24,4 | - 19 18 ⋅ sin ( 0,0524 t - 1,0472 ) = 5,4 |: 18 sin ( 0,0524 t - 1,0472 ) = 0,3 |sin-1(⋅) Der WTR liefert nun als Wert 0.3046926540154
1. Fall:
0,0524 x - 1,0472 = 0,305 | + 1,0472 0,0524 x = 1,3522 |: 0,0524 x1 = 25,8053 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,0524 t - 1,0472 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.3 schneidet den Einheitskreis in einem zweiten Punkt).0,3 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,305 liegen muss.2,837 2. Fall:
0,0524 x - 1,0472 = 2,837 | + 1,0472 0,0524 x = 3,8842 |: 0,0524 x2 = 74,126 Da die Sinus-Funktion ja um 20 nach rechts verschoben ist, startet sie nach 20 s nach oben und erreicht erstmals nach 25.81 s den Wert 24.4. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 74.13 s zum zweiten mal den Wert 24.4 erreicht. Während dieser 74.13 - 25.81 = 48.32 s ist der Wert der Funktion also höher als 24.4.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = 2 wird also
Für a = 2 ist dann die maximale Periode pmax
=
