Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|0).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Hochpunkt ist also eine Amplitude (a=1) über 0, also bei y=1.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=2 in y-Richtung verschoben ist.
Der erste Hochpunkt wäre also im Punkt P(0|2).
Weil aber das Vorzeichen von a = -3 aber negativ ist, wird die Original-funktion f(x)=cos(x) nicht nur um den Faktor 3 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem Hochpunkt in P ein Tiefpunkt in P(0|2) wird.
Mit Hilfe von b=
p=
Der gesuchte Tiefpunkt ist bei cos(x) nach der Hälfte der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=3) unter 2, also bei y=-1.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=sin(x)
nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P
ein fallender Wendepunkt in P(
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil diese Stelle aber negativ ist, müssen wir noch (mindestens) eine Periode dazu addieren,
damit der x-Wert im gesuchten Intervall [0;
also x1=
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Wendepunkt ist also gerade -3.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 1.4706289056333
1. Fall:
|
|
= |
|
|⋅ 2 |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
|
= |
|
|⋅ 2 |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Zu welcher Zeit (in s) ist die Gondel am tiefsten Punkt?
- Wie hoch ist die Gondel an ihrem tiefsten Punkt über dem Erdboden?
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 25,1 m?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
herauslesen und in die Periodenformel einsetzen:1 100 π Somit gilt für die Periodenlänge: p =
=2 π b = 2002 π 1 100 π - t-Wert des Minimums (TP)
Gesucht ist die Stelle mit dem geringsten Funktionswert, also der x- bzw- t-Wert des Tiefpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Dreiviertel Periode (im Einheitskreis ist man nach einer Dreiviertel-Umdrehung ganz unten bei y=-1), hier also nach 150 s.
Die Sinusfunktion ist aber auch noch um 30 nach rechts verschoben, d.h. sie startet auch erst bei t = 30 s mit ihrer Periode. Somit erreicht sie ihren Tiefpunkt nach 150 + 30 s = 180 s. Die Lösung ist also: 180 s.
- y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 20 nach oben und eine Amplitude von a = 17 erkennen, d.h. f schwingt um maximal 17 um 20. Somit ist der tiefste Wert bei 20 m - 17 m = 3 m.
- t-Werte mit f(t) ≥ 25.1
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 25.1 hat. Wir setzen also den Funktionsterm mit 25.1 gleich:
= 25.117 ⋅ sin ( 1 100 π ( t - 30 ) ) + 20 17 ⋅ sin ( 0,0314 t - 0,9425 ) + 20 = 25,1 | - 20 17 ⋅ sin ( 0,0314 t - 0,9425 ) = 5,1 |: 17 sin ( 0,0314 t - 0,9425 ) = 0,3 |sin-1(⋅) Der WTR liefert nun als Wert 0.3046926540154
1. Fall:
0,0314 x - 0,9425 = 0,305 | + 0,9425 0,0314 x = 1,2475 |: 0,0314 x1 = 39,7293 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,0314 t - 0,9425 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.3 schneidet den Einheitskreis in einem zweiten Punkt).0,3 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,305 liegen muss.2,837 2. Fall:
0,0314 x - 0,9425 = 2,837 | + 0,9425 0,0314 x = 3,7795 |: 0,0314 x2 = 120,3662 Da die Sinus-Funktion ja um 30 nach rechts verschoben ist, startet sie nach 30 s nach oben und erreicht erstmals nach 39.73 s den Wert 25.1. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 120.37 s zum zweiten mal den Wert 25.1 erreicht. Während dieser 120.37 - 39.73 = 80.64 s ist der Wert der Funktion also höher als 25.1.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = 0 wird also
Für a = 0 ist dann die maximale Periode pmax
=
