Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-2).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über -2, also bei y=0.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-3 in y-Richtung verschoben ist.
Der erste Hochpunkt wäre also im Punkt P(0|-3).
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Wendepunkt ist also gerade -3.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=sin(x)
nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P
ein fallender Wendepunkt in P(
Mit Hilfe von b=
p=
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter -2, also bei y=-4.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 1.3694384060046
1. Fall:
|
|
= |
|
|⋅ 2 |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
|
= |
|
|⋅ 2 |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann man die Durchschnittstemperatur zur Uhrzeit t (in h) durch die Funktion f mit
- Zu welcher Uhrzeit ist es am kältesten?
- Zu welcher Uhrzeit nimmt die Temperatur am stärksten ab?
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- t-Wert des Minimums (TP)
Gesucht ist die Stelle mit dem geringsten Funktionswert, also der x- bzw- t-Wert des Tiefpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Dreiviertel Periode (im Einheitskreis ist man nach einer Dreiviertel-Umdrehung ganz unten bei y=-1), hier also nach 18 h.
Die Sinusfunktion ist aber auch noch um 9 nach rechts verschoben, d.h. sie startet auch erst bei t = 9 h mit ihrer Periode. Somit erreicht sie ihren Tiefpunkt nach 18 + 9 h = 27 h. Weil aber 27 nicht im gesuchten Intervall [0;24] liegt, nehmen wir den Punkt eine Periode früher, also bei 27 - 24 = 3 h. Die Lösung ist also: 3 Uhr.
- t-Wert bei der stärksten Abnahme
Gesucht ist die Stelle mit der größten Abnahme, also der minimalen Steigung. Die maximale und minimale Tangentensteigungen befinden sich immer in den Wendepunkten. Hier ist der Wendepunkt mit der negativen Steigung gesucht. Dieser ist bei einer Sinus-Funktion aber immer genau nach einer halben Periode, also nach 12 h.
Die Sinusfunktion ist aber auch noch um 9 nach rechts verschoben, d.h. sie startet auch erst bei t = 9 h mit ihrer Periode. Somit erreicht sie ihren fallenenden Wendepunkt nach 12 + 9 h = 21 h. Die Lösung ist also: 21 Uhr.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = 3 wird also
Für a = 3 ist dann die maximale Periode pmax
=
