Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-1).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Wendepunkt ist also gerade -1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|1) wird.
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Wendepunkt ist also gerade 1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=3 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil diese Stelle aber negativ ist, müssen wir noch (mindestens) eine Periode dazu addieren,
damit der x-Wert im gesuchten Intervall [0;
also x1=
Weil diese Stelle aber negativ ist, müssen wir noch (mindestens) eine Periode dazu addieren,
damit der x-Wert im gesuchten Intervall [0;
also x2=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Wendepunkt ist also gerade 3.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
= | |: |
|
= | |sin-1(⋅) |
Der WTR liefert nun als Wert -0.41151684606749
Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen,
addieren wir einfach noch 2π dazu und erhalten so
1. Fall:
|
= |
|
|: |
x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt,
also π -
2. Fall:
|
= |
|
|: |
x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Zu welcher Zeit (in s) ist die Gondel am tiefsten Punkt?
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 30,8 m?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
1 30 π Somit gilt für die Periodenlänge: p =
2 π b 2 π 1 30 π - t-Wert des Minimums (TP)
Gesucht ist die Stelle mit dem geringsten Funktionswert, also der x- bzw- t-Wert des Tiefpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Dreiviertel Periode (im Einheitskreis ist man nach einer Dreiviertel-Umdrehung ganz unten bei y=-1), hier also nach 45 s.
Die Sinusfunktion ist aber auch noch um 40 nach rechts verschoben, d.h. sie startet auch erst bei t = 40 s mit ihrer Periode. Somit erreicht sie ihren Tiefpunkt nach 45 + 40 s = 85 s. Weil aber 85 nicht im gesuchten Intervall [0;60] liegt, nehmen wir den Punkt eine Periode früher, also bei 85 - 60 = 25 s. Die Lösung ist also: 25 s.
- t-Werte mit f(t) ≥ 30.8
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 30.8 hat. Wir setzen also den Funktionsterm mit 30.8 gleich:
18 ⋅ sin ( 1 30 π ( t - 40 ) ) + 20 18 ⋅ sin ( 0,1047 t - 4,1888 ) + 20 = 30,8 | - 20 18 ⋅ sin ( 0,1047 t - 4,1888 ) = 10,8 |: 18 sin ( 0,1047 t - 4,1888 ) = 0,6 |sin-1(⋅) Der WTR liefert nun als Wert 0.64350110879328
1. Fall:
0,1047 x - 4,1888 = 0,644 | + 4,1888 0,1047 x = 4,8328 |: 0,1047 x1 = 46,1585 Am Einheitskreis erkennen wir, dass die Gleichung
sin ( 0,1047 t - 4,1888 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.6 schneidet den Einheitskreis in einem zweiten Punkt).0,6 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
0,644 2,498 2. Fall:
0,1047 t - 4,1888 = 2,498 oder
0,1047 x - 4,1888 = 2,498 - 2 π | + 4,1888 0,1047 x = 6,6868 - 2 π 0,1047 x = 0,4036 |: 0,1047 x2 = 3,8548 Da die Sinus-Funktion ja um 40 nach rechts verschoben ist, startet sie nach 40 s nach oben und erreicht erstmals nach 3.85 s den Wert 30.8. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 46.16 s zum zweiten mal den Wert 30.8 erreicht. Während dieser 46.16 - 3.85 = 42.31 s ist der Wert der Funktion also höher als 30.8.
Polstellen und hebbare Def.-Lücken
Beispiel:
Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) =
Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
|
= | |
|
|
x2 | = |
|
also Definitionsmenge D=R\{
Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Kosiniusfunktion hat ja seinen ersten Tiefpunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von