Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-1).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Wendepunkt ist also gerade -1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=3 in y-Richtung verschoben ist.
Der erste Hochpunkt wäre also im Punkt P(0|3).
Mit Hilfe von b=1 und der Periodenformel p=
p=
Der gesuchte Hochpunkt ist bei cos(x) zu Beginn der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Hochpunkt ist also eine Amplitude (a=3) über 3, also bei y=6.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Mit Hilfe von b=
p=
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=2) unter 0, also bei y=-2.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 1.3694384060046
1. Fall:
|
|
= |
|
|⋅ 4 |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
|
= |
|
|⋅ 4 |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit
- Bestimme die maximale Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h).
- Wie lange (in Tagen) haben die Tage eine Länge von mindestens 14,4 h?
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- y-Wert des Maximums (HP)
Gesucht ist der höchste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 4 erkennen, d.h. f schwingt um maximal 4 um 12. Somit ist der höchste Wert bei 12 h + 4 h = 16 h.
- t-Werte mit f(t) ≥ 14.4
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 14.4 hat. Wir setzen also den Funktionsterm mit 14.4 gleich:
= 14.44 ⋅ sin ( 1 183 π ( t - 40 ) ) + 12 4 ⋅ sin ( 0,0172 t - 0,6867 ) + 12 = 14,4 | - 12 4 ⋅ sin ( 0,0172 t - 0,6867 ) = 2,4 |: 4 sin ( 0,0172 t - 0,6867 ) = 0,6 |sin-1(⋅) Der WTR liefert nun als Wert 0.64350110879328
1. Fall:
0,0172 x - 0,6867 = 0,644 | + 0,6867 0,0172 x = 1,3307 |: 0,0172 x1 = 77,3663 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,0172 t - 0,6867 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.6 schneidet den Einheitskreis in einem zweiten Punkt).0,6 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,644 liegen muss.2,498 2. Fall:
0,0172 x - 0,6867 = 2,498 | + 0,6867 0,0172 x = 3,1847 |: 0,0172 x2 = 185,157 Da die Sinus-Funktion ja um 40 nach rechts verschoben ist, startet sie nach 40 d nach oben und erreicht erstmals nach 77.37 d den Wert 14.4. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 185.16 d zum zweiten mal den Wert 14.4 erreicht. Während dieser 185.16 - 77.37 = 107.79 d ist der Wert der Funktion also höher als 14.4.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = 3 wird also
Für a = 3 ist dann die maximale Periode pmax
=
