Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-1).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=3) unter -1, also bei y=-4.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-3).
Mit Hilfe von b=
p=
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=3) unter -3, also bei y=-6.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-2 in
y-Richtung und um c=
Der erste Hochpunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -2 aber negativ ist, wird die Original-funktion f(x)=cos(x)
nicht nur um den Faktor 2 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem Hochpunkt in P
ein Tiefpunkt in P(
Mit Hilfe von b=1 und der Periodenformel p=
p=
Der gesuchte Hochpunkt ist bei cos(x) zu Beginn der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über -2, also bei y=0.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |sin-1(⋅) |
Der WTR liefert nun als Wert -1.1197695149986
Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen,
addieren wir einfach noch 2π dazu und erhalten so
1. Fall:
|
|
= |
|
|: |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt,
also π -
2. Fall:
|
|
= |
|
|: |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 17 m?
- Zu welcher Zeit (in s) ist die Gondel am höchsten?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
herauslesen und in die Periodenformel einsetzen:1 80 π Somit gilt für die Periodenlänge: p =
=2 π b = 1602 π 1 80 π - t-Werte mit f(t) ≥ 17
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 17 hat. Wir setzen also den Funktionsterm mit 17 gleich:
= 1710 ⋅ sin ( 1 80 π ( t - 40 ) ) + 13 10 ⋅ sin ( 0,0393 t - 1,5708 ) + 13 = 17 | - 13 10 ⋅ sin ( 0,0393 t - 1,5708 ) = 4 |: 10 sin ( 0,0393 t - 1,5708 ) = 0,4 |sin-1(⋅) Der WTR liefert nun als Wert 0.41151684606749
1. Fall:
0,0393 x - 1,5708 = 0,412 | + 1,5708 0,0393 x = 1,9828 |: 0,0393 x1 = 50,4529 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,0393 t - 1,5708 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.4 schneidet den Einheitskreis in einem zweiten Punkt).0,4 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,412 liegen muss.2,73 2. Fall:
0,0393 x - 1,5708 = 2,73 | + 1,5708 0,0393 x = 4,3008 |: 0,0393 x2 = 109,4351 Da die Sinus-Funktion ja um 40 nach rechts verschoben ist, startet sie nach 40 s nach oben und erreicht erstmals nach 50.45 s den Wert 17. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 109.44 s zum zweiten mal den Wert 17 erreicht. Während dieser 109.44 - 50.45 = 58.99 s ist der Wert der Funktion also höher als 17.
- t-Wert des Maximums (HP)
Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 40 s.
Die Sinusfunktion ist aber auch noch um 40 nach rechts verschoben, d.h. sie startet auch erst bei t = 40 s mit ihrer Periode. Somit erreicht sie ihren Hochpunkt nach 40 + 40 s = 80 s. Die Lösung ist also: 80 s.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Sinusfunktion hat ja seinen ersten Tiefpunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von
