Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|3).
Mit Hilfe von b=3 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
≈
. und bei x2=
≈
. .
Weil das gesuchte Interval [0; ) zwei Perioden umfasst, ist auch noch = und = eine Lösung.
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Wendepunkt ist also gerade 3.
Wir erhalten also als Ergebnis einen Wendepunkt bei ( |3) und einen bei ( |3) und einen bei ( |3) und einen bei ( |3)
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Weil aber das Vorzeichen von a = -3 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 3 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|1) wird.
Mit Hilfe von b=4 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
aber nach Dreiviertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Hochpunkt ist also eine Amplitude (a=3) über 1, also bei y=4.
Wir erhalten also als Ergebnis einen Hochpunkt bei ( |4)
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=3 in y-Richtung und um c= nach rechts verschoben ist.
Der erste Hochpunkt wäre also im Punkt P( |4).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei cos(x) nach der Hälfte der Periode,
also bei x1=
Die Funktion schwingt wegen d=3 um y=3. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=1) unter 3, also bei y=2.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |sin-1(⋅) |
Der WTR liefert nun als Wert 0.41151684606749
1. Fall:
|
|
= |
|
|⋅ 3 |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt,
also π -
2. Fall:
|
|
= |
|
|⋅ 3 |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann man die Durchschnittstemperatur zur Uhrzeit t (in h) durch die Funktion f mit
- Zu welcher Uhrzeit ist es am kältesten?
- Wie groß ist die tiefste Temperatur?
- Wie lange (in Stunden) ist es wärmer als 15,5°C?
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- t-Wert des Minimums (TP)
Gesucht ist die Stelle mit dem geringsten Funktionswert, also der x- bzw- t-Wert des Tiefpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Dreiviertel Periode (im Einheitskreis ist man nach einer Dreiviertel-Umdrehung ganz unten bei y=-1), hier also nach 18 h.
Die Sinusfunktion ist aber auch noch um 7 nach rechts verschoben, d.h. sie startet auch erst bei t = 7 h mit ihrer Periode. Somit erreicht sie ihren Tiefpunkt nach 18 + 7 h = 25 h. Weil aber 25 nicht im gesuchten Intervall [0;24] liegt, nehmen wir den Punkt eine Periode früher, also bei 25 - 24 = 1 h. Die Lösung ist also: 1 Uhr.
- y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 14 nach oben und eine Amplitude von a = 3 erkennen, d.h. f schwingt um maximal 3 um 14. Somit ist der tiefste Wert bei 14 ° C - 3 ° C = 11 ° C.
- t-Werte mit f(t) ≥ 15.5
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 15.5 hat. Wir setzen also den Funktionsterm mit 15.5 gleich:
= 15.53 ⋅ sin ( 1 12 π ( t - 7 ) ) + 14 3 ⋅ sin ( 0,2618 t - 1,8326 ) + 14 = 15,5 | - 14 3 ⋅ sin ( 0,2618 t - 1,8326 ) = 1,5 |: 3 sin ( 0,2618 t - 1,8326 ) = 0,5 |sin-1(⋅) Der WTR liefert nun als Wert 0.5235987755983
1. Fall:
0,2618 x - 1,8326 = 5 6 π | + 1,8326 0,2618 x = 1,8326 + 5 6 π 0,2618 x = 4,4506 |: 0,2618 x1 = 17 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,2618 t - 1,8326 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).0,5 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=5 6 π liegen muss.1 6 π 2. Fall:
0,2618 x - 1,8326 = 1 6 π | + 1,8326 0,2618 x = 1,8326 + 1 6 π 0,2618 x = 2,3562 |: 0,2618 x2 = 9 Da die Sinus-Funktion ja um 7 nach rechts verschoben ist, startet sie nach 7 h nach oben und erreicht erstmals nach 9 h den Wert 15.5. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 17 h zum zweiten mal den Wert 15.5 erreicht. Während dieser 17 - 9 = 8 h ist der Wert der Funktion also höher als 15.5.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = -1 wird also
Für a = -1 ist dann die maximale Periode pmax
=
