Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Wendepunkt ist also gerade 1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=2 in y-Richtung verschoben ist.
Der erste Hochpunkt wäre also im Punkt P(0|2).
Mit Hilfe von b=2 und der Periodenformel p=
p=
Der gesuchte Wendepunkt ist bei cos(x) nach einem Viertel und nach Dreiviertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Wendepunkt ist also gerade 2.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-2 in
y-Richtung und um c=
Der erste Hochpunkt wäre also im Punkt P(
Mit Hilfe von b=1 und der Periodenformel p=
p=
Der gesuchte Tiefpunkt ist bei cos(x) nach der Hälfte der Periode,
also bei x1=
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=1) unter -2, also bei y=-3.
Wir erhalten also als Ergebnis einen Tiefpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 2.0943951023932
1. Fall:
|
|
= |
|
|: |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
|
= |
|
|: |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
In einem Wellenbad kann man an einer bestimmten Stelle die Wasserhöhe zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Periode dieses Vorgangs.
- Wie lange (in Sekunden) ist die Wasserhöhe höher als 102cm?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
herauslesen und in die Periodenformel einsetzen:2 3 π Somit gilt für die Periodenlänge: p =
=2 π b = 32 π 2 3 π - t-Werte mit f(t) ≥ 102
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 102 hat. Wir setzen also den Funktionsterm mit 102 gleich:
= 10230 ⋅ sin ( 2 3 π t ) + 90 30 ⋅ sin ( 2,0944 t ) + 90 = 102 | - 90 30 ⋅ sin ( 2,0944 t ) = 12 |: 30 sin ( 2,0944 t ) = 0,4 |sin-1(⋅) Der WTR liefert nun als Wert 0.41151684606749
1. Fall:
2,0944 x = 0,412 |: 2,0944 x1 = 0,1967 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 2,0944 t ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.4 schneidet den Einheitskreis in einem zweiten Punkt).0,4 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,412 liegen muss.2,73 2. Fall:
2,0944 x = 2,73 |: 2,0944 x2 = 1,3035 Die Sinus-Funktion startet zu Beginn nach oben und erreicht erstmals nach 0.2 s den Wert 102. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 1.3 s zum zweiten mal den Wert 102 erreicht. Während dieser 1.3 - 0.2 = 1.1 s ist der Wert der Funktion also höher als 102.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = -1 wird also
Für a = -1 ist dann die minimale Periode pmin
=
