Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=2 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|2).
Mit Hilfe von b=2 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=3) unter 2, also bei y=-1.
Wir erhalten also als Ergebnis einen Tiefpunkt bei ( |-1)
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|0).
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|0) wird.
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Wendepunkt ist also gerade 0.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-1 in
y-Richtung und um c=
Der erste Hochpunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=cos(x)
nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem Hochpunkt in P
ein Tiefpunkt in P(
Mit Hilfe von b=1 und der Periodenformel p=
p=
Der gesuchte Hochpunkt ist bei cos(x) zu Beginn der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Hochpunkt ist also eine Amplitude (a=1) über -1, also bei y=0.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 2.6905658417935
1. Fall:
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|: |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|: |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit
- Wie viele Tage nach Beobachtungsbeginn ist der Tag am längsten?
- Wie lange (in Tagen) haben die Tage eine Länge von mindestens 15,15 h?
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- t-Wert des Maximums (HP)
Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 91.5 d.
Die Sinusfunktion ist aber auch noch um 60 nach rechts verschoben, d.h. sie startet auch erst bei t = 60 d mit ihrer Periode. Somit erreicht sie ihren Hochpunkt nach 91.5 + 60 d = 151.5 d. Die Lösung ist also: 151.5 d.
- t-Werte mit f(t) ≥ 15.15
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 15.15 hat. Wir setzen also den Funktionsterm mit 15.15 gleich:
= 15.154,5 ⋅ sin ( 1 183 π ( t - 60 ) ) + 12 4,5 ⋅ sin ( 0,0172 t - 1,03 ) + 12 = 15,15 | - 12 4,5 ⋅ sin ( 0,0172 t - 1,03 ) = 3,15 |: 4,5 sin ( 0,0172 t - 1,03 ) = 0,7 |sin-1(⋅) Der WTR liefert nun als Wert 0.77539749661075
1. Fall:
0,0172 x - 1,03 = 0,775 | + 1,03 0,0172 x = 1,805 |: 0,0172 x1 = 104,9419 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,0172 t - 1,03 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.7 schneidet den Einheitskreis in einem zweiten Punkt).0,7 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,775 liegen muss.2,366 2. Fall:
0,0172 x - 1,03 = 2,366 | + 1,03 0,0172 x = 3,396 |: 0,0172 x2 = 197,4419 Da die Sinus-Funktion ja um 60 nach rechts verschoben ist, startet sie nach 60 d nach oben und erreicht erstmals nach 104.94 d den Wert 15.15. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 197.44 d zum zweiten mal den Wert 15.15 erreicht. Während dieser 197.44 - 104.94 = 92.5 d ist der Wert der Funktion also höher als 15.15.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Sinusfunktion hat ja seinen ersten Hochpunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von
