Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-2).
Mit Hilfe von b=1 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=1) unter -2, also bei y=-3.
Wir erhalten also als Ergebnis einen Tiefpunkt bei ( |-3)
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-3).
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|-3) wird.
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
also bei x1=
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Hochpunkt ist also eine Amplitude (a=1) über -3, also bei y=-2.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -3 aber negativ ist, wird die Original-funktion f(x)=sin(x)
nicht nur um den Faktor 3 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P
ein fallender Wendepunkt in P(
Mit Hilfe von b=2 und der Periodenformel p=
p=
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil diese Stelle aber negativ ist, müssen wir noch (mindestens) eine Periode dazu addieren,
damit der x-Wert im gesuchten Intervall [0;
also x1=
Weil diese Stelle aber negativ ist, müssen wir noch (mindestens) eine Periode dazu addieren,
damit der x-Wert im gesuchten Intervall [0;
also x2=
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Wendepunkt ist also gerade -2.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |cos-1(⋅) |
Der WTR liefert nun als Wert 2.3461938234056
1. Fall:
|
|
= |
|
|: |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
|
= |
|
|: |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
In einem Wellenbad kann man an einer bestimmten Stelle die Wasserhöhe zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit
- Bestimme die Periode dieses Vorgangs.
- Bestimme die kleinste Wasserhöhe.
- Wie lange (in Sekunden) ist die Wasserhöhe höher als 86cm?
- Zu welcher Zeit (in s) ist die Wasserhöhe am höchsten?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b =
herauslesen und in die Periodenformel einsetzen:2 π Somit gilt für die Periodenlänge: p =
=2 π b = 12 π 2 π - y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 80 nach oben und eine Amplitude von a = 15 erkennen, d.h. f schwingt um maximal 15 um 80. Somit ist der tiefste Wert bei 80 cm - 15 cm = 65 cm.
- t-Werte mit f(t) ≥ 86
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 86 hat. Wir setzen also den Funktionsterm mit 86 gleich:
= 8615 ⋅ sin ( 2 π t ) + 80 15 ⋅ sin ( 6,2832 t ) + 80 = 86 | - 80 15 ⋅ sin ( 6,2832 t ) = 6 |: 15 sin ( 6,2832 t ) = 0,4 |sin-1(⋅) Der WTR liefert nun als Wert 0.41151684606749
1. Fall:
6,2832 x = 0,412 |: 6,2832 x1 = 0,0656 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 6,2832 t ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.4 schneidet den Einheitskreis in einem zweiten Punkt).0,4 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,412 liegen muss.2,73 2. Fall:
6,2832 x = 2,73 |: 6,2832 x2 = 0,4345 Die Sinus-Funktion startet zu Beginn nach oben und erreicht erstmals nach 0.07 s den Wert 86. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 0.43 s zum zweiten mal den Wert 86 erreicht. Während dieser 0.43 - 0.07 = 0.36 s ist der Wert der Funktion also höher als 86.
- t-Wert des Maximums (HP)
Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 0.25 s.
Die Lösung ist also: 0.25 s.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = 2 wird also
Für a = 2 ist dann die maximale Periode pmax
=
