Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Wendepunkt ist also gerade 1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extrempunkte bei trigonometr. Fktn. BF
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|1).
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|1) wird.
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Weil das gesuchte Interval [0;
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Wendepunkt ist also gerade 1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Extremstellen bei trigon. Fktn (LF)
Beispiel:
Bestimme die Wendepunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x)
nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P
ein fallender Wendepunkt in P(
Mit Hilfe von b=
p=
Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1=
Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Wendepunkt ist also gerade 1.
Wir erhalten also als Ergebnis einen Wendepunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
|
= | |: |
|
|
= | |sin-1(⋅) |
Der WTR liefert nun als Wert 0.92729521800161
1. Fall:
|
|
= |
|
|⋅ 4 |
| x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt,
also π -
2. Fall:
|
|
= |
|
|⋅ 4 |
| x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit
- Bestimme die kürzeste Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h)
- Bestimme die maximale Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h).
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 5 erkennen, d.h. f schwingt um maximal 5 um 12. Somit ist der tiefste Wert bei 12 h - 5 h = 7 h.
- y-Wert des Maximums (HP)
Gesucht ist der höchste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 5 erkennen, d.h. f schwingt um maximal 5 um 12. Somit ist der höchste Wert bei 12 h + 5 h = 17 h.
Parameter für best. Periode finden
Beispiel:
Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit
Bestimme das zugehörige a und die extremale Periode.
Wir berechnen zuerst die Periode von fa mit
p =
Man erkennt jetzt gut, dass je größer
Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:
(
Für dieses a = 0 wird also
Für a = 0 ist dann die minimale Periode pmin
=
