Aufgabenbeispiele von Trigonometrie

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ableiten von trigonometrischen Funktionen

Beispiel:

Berechne die Ableitung von f mit f(x)= ( cos( x ) ) 2 und vereinfache:

Lösung einblenden

f(x)= ( cos( x ) ) 2

f'(x)= 2( cos( x ) ) · ( - sin( x ) )

= -2 cos( x ) · sin( x )

= -2 sin( x ) · cos( x )

Ableiten von trigonometrischen Funktionen BF

Beispiel:

Berechne die Ableitung von f mit f(x)= sin( 2 3 ( x +2π)) -2 und vereinfache:

Lösung einblenden

f(x)= sin( 2 3 ( x +2π)) -2

f'(x)= cos( 2 3 ( x +2π)) · ( 2 3 ( 1 +0) )+0

= cos( 2 3 ( x +2π)) · 2 3

= 2 3 cos( 2 3 ( x +2π))

Integral über trigon. Funktion

Beispiel:

Bestimme das Integral 1 2 π π 5 sin( -4x ) x .

Lösung einblenden
1 2 π π 5 sin( -4x ) x

= [ 5 4 cos( -4x ) ] 1 2 π π

= 5 4 cos( -4π ) - 5 4 cos( -4( 1 2 π ) )

= 5 4 1 - 5 4 1

= 5 4 - 5 4

= 0

Extrempunkte bei trigon. Fktn. BF (einfach)

Beispiel:

Bestimme die Wendepunkte des Graphen von f mit f(x)= sin( 1 2 x ) +1 im Intervall [0; 8π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.

Der erste steigender Wendepunkt wäre also im Punkt P(0|1).

Mit Hilfe von b= 1 2 und der Periodenformel p= b erhalten wir als Periode:
p= 1 2 = 4π

Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1= 0 0 . und bei x2= 2π 2π . .

Weil das gesuchte Interval [0; 8π ) zwei Perioden umfasst, ist auch noch 0+4π = 4π und 2π+4π = 6π eine Lösung.

Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Wendepunkt ist also gerade 1.

Wir erhalten also als Ergebnis einen Wendepunkt bei ( 0 |1) und einen bei ( 2π |1) und einen bei ( 4π |1) und einen bei ( 6π |1)

Extrempunkte bei trigonometr. Fktn. BF

Beispiel:

Bestimme die Wendepunkte des Graphen von f mit f(x)= - sin( 1 4 x ) +1 im Intervall [0; 16π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung verschoben ist.

Der erste steigender Wendepunkt wäre also im Punkt P(0|1).

Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|1) wird.

Mit Hilfe von b= 1 4 und der Periodenformel p= b erhalten wir als Periode:
p= 1 4 = 8π

Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1= 0 0 . und bei x2= 4π 4π . .

Weil das gesuchte Interval [0; 16π ) zwei Perioden umfasst, ist auch noch 0+8π = 8π und 4π+8π = 12π eine Lösung.

Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Wendepunkt ist also gerade 1.

Wir erhalten also als Ergebnis einen Wendepunkt bei ( 0 |1) und einen bei ( 4π |1) und einen bei ( 8π |1) und einen bei ( 12π |1)

Extremstellen bei trigon. Fktn (LF)

Beispiel:

Bestimme die Wendepunkte des Graphen von f mit f(x)= - sin( 1 2 ( x -2 )) +1 im Intervall [0; 4π ).
(Tipp: am schnellsten geht das ohne Ableitungen)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.

Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=1 in y-Richtung und um c= 2 nach rechts verschoben ist.

Der erste steigender Wendepunkt wäre also im Punkt P( 2 |1).

Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P( 2 |1) wird.

Mit Hilfe von b= 1 2 und der Periodenformel p= b erhalten wir als Periode:
p= 1 2 = 4π

Der gesuchte Wendepunkt ist bei sin(x) zu Beginn und nach der Hälfte der Periode,
also bei x1= 2 + 0 2 . und bei x2= 2 + 2π 8,283 . .

Die Funktion schwingt wegen d=1 um y=1. Der y-Wert des Wendepunkt ist also gerade 1.

Wir erhalten also als Ergebnis einen Wendepunkt bei ( 2 |1) und bei ( 8,283 |1)

Nullstellen mit dem WTR

Beispiel:

Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit f(x)= 2 sin( 1 4 x ) -1,6 innerhalb einer Periode, also im Intervall [0; 8π [.

Lösung einblenden

Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.

Daraus ergibt sich folgende Gleichung:

2 sin( 1 4 x ) -1,6 = 0 | +1,6
2 sin( 1 4 x ) = 1,6 |:2
canvas
sin( 1 4 x ) = 0,8 |sin-1(⋅)

Der WTR liefert nun als Wert 0.92729521800161

1. Fall:

1 4 x = 0,927 |⋅ 4
x1 = 3,708

Am Einheitskreis erkennen wir, dass die Gleichung sin( 1 4 x ) = 0,8 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.8 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,927 = 2,214 liegen muss.

2. Fall:

1 4 x = 2,214 |⋅ 4
x2 = 8,856

L={ 3,708 ; 8,856 }

Die Nullstellen in der Periode [0; 8π ) sind also
bei x1 = 3,708 und x2 = 8,856 .

trigon. Anwendungsaufgabe 2

Beispiel:

An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit f(t)= 5 sin( 1 183 π ( t -40 )) +12 (0 < t ≤ 366) angeben.

  1. Bestimme die kürzeste Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h)
  2. Bestimme die maximale Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h).

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Aus dem Funktionsterm können wir den Faktor b = 1 183 π herauslesen und in die Periodenformel einsetzen:

Somit gilt für die Periodenlänge: p = 2 π b = 2 π 1 183 π = 366

  1. y-Wert des Minimums (TP)

    Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 5 erkennen, d.h. f schwingt um maximal 5 um 12. Somit ist der tiefste Wert bei 12 h - 5 h = 7 h.

  2. y-Wert des Maximums (HP)

    Gesucht ist der höchste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 5 erkennen, d.h. f schwingt um maximal 5 um 12. Somit ist der höchste Wert bei 12 h + 5 h = 17 h.

Parameter für best. Periode finden

Beispiel:

Untersuche, ob es einen maximalen oder minimalen Wert für die Periode von fa mit fa(x)= 2 cos( 1 a 2 +4 x ) gibt.

Bestimme das zugehörige a und die extremale Periode.

Lösung einblenden

Wir berechnen zuerst die Periode von fa mit fa(x)= 2 cos( 1 a 2 +4 x ) :

p = b = 1 a 2 +4 = 2π · ( a 2 +4 )

Man erkennt jetzt gut, dass je größer a 2 +4 wird, desto größer wird auch die Periode.

a 2 +4 ist eine quadratische Funktion, ihr Graph ist eine nach oben geöffnete Parabel mit einem Tiefpunkt als Scheitel. Somit hat a 2 +4 also einen minimalen Wert, während es noch oben keine Grenze gibt.

Diesen minimalen Wert können wir schnell über die Nullstelle der ersten Ableitung bestimmen:

( a 2 +4 )' = 2a = 0 ⇔ a = 0

Für dieses a = 0 wird also a 2 +4 minimal und somit auch die Periode 2π · ( a 2 +4 ) minimal .

Für a = 0 ist dann die minimale Periode pmin = 2π · ( 0 2 +4 ) = 2π · ( 0 +4 ) = 8π .