Aufgabenbeispiele von Asymptoten
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
senkrechte Asymptote (einfach)
Beispiel:
Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) =
Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.
= | | | ||
= |
also Definitionsmenge D=R\{ }
Wir untersuchen nun das Verhalten für x → (von links und von rechts)
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
senkrechte Asymptoten
Beispiel:
Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) =
Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
|
= | |
|
|
x2 | = |
|
also Definitionsmenge D=R\{
Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
alle Asymptoten bestimmen
Beispiel:
Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) =
senkrechte Asymptoten
Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | |
|
|
x1 | = |
|
2. Fall:
|
= | |
|
|
x2 | = |
|
also Definitionsmenge D=R\{
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
Wir untersuchen nun das Verhalten für x →
Für x
Für x
Die Funktion besitzt folglich eine senkrechte Asymptote bei x=
waagrechte Asymptoten
Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:
Vorher sollte man allerdings noch ausmultiplizien.
So können wir einfach das Verhalten für x→ ±∞ untersuchen:
Für x → ±∞ ⇒ f(x)=
Die Funktion besitzt folglich eine waagrechte Asymptote bei y =
waagrechte Asymptoten
Beispiel:
Bestimme das Verhalten der Funktion f mit f(x) =
Für x → -∞ ⇒ f(x)=
Für x → ∞ ⇒ f(x)=
Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y =
Term mit Asymptoten bestimmen
Beispiel:
Bestimme einen Funktionsterm dessen Graph bei x1 = 1 und bei x2 = 3 jeweils eine senkrechte Asymptote, bei y = -2 eine waagrechte Asymptote und in N1(4|0) und N2(-2|0) Nullstellen besitzt.
Zuerst der Nenner
Aufgrund der senkrechten Asymptoten bei x1=1 und x2=3 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:
Nullstellen in den Zähler
Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also
Jetzt testen wir
Um die waagrechte Asymptote von 1 auf -2 zu bringen multiplizieren wir einfach den Zähler mit -2 und erhalten so:
waagrechte Asymptoten
Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:
Vorher sollte man allerdings noch ausmultiplizien.
So können wir einfach das Verhalten für x→ ±∞ untersuchen:
Für x → ±∞ ⇒ f(x)=
Mit f(x)=
e-Fkt'n Verhalten → ∞
Beispiel:
Bestimme das Verhalten der Funktion f mit f(x) =
Für x → -∞ ⇒ f(x)=
Für x → ∞ ⇒ f(x)=
Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y =