Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4 x +1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +1 = 0 | -1
x = -1

also Definitionsmenge D=R\{ -1 }

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -4 x +1 -4 "-0"

Für x   x>-1   -1 + ⇒ f(x)= -4 x +1 -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -5 x 2 -4x -1 ( -1 + x ) ( x -4 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( -1 + x ) ( x -4 ) = 0
( x -1 ) ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

x -4 = 0 | +4
x2 = 4

also Definitionsmenge D=R\{ 1 ; 4 }

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -5 x 2 -4x -1 ( -1 + x ) ( x -4 ) -10 "-0" ⋅ (-3) = -10 "+0" -

Für x   x>1   1 + ⇒ f(x)= -5 x 2 -4x -1 ( -1 + x ) ( x -4 ) -10 "+0" ⋅ (-3) = -10 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -5 x 2 -4x -1 ( -1 + x ) ( x -4 ) -97 (+3) ⋅ "-0" = -97 "-0"

Für x   x>4   4 + ⇒ f(x)= -5 x 2 -4x -1 ( -1 + x ) ( x -4 ) -97 (+3) ⋅ "+0" = -97 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -2 ( x +2 ) ( x -3 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +2 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +2 = 0 | -2
x1 = -2

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ -2 ; 3 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -2 ( x +2 ) ( x -3 ) -2 "-0" ⋅ (-5) = -2 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= -2 ( x +2 ) ( x -3 ) -2 "+0" ⋅ (-5) = -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -2 ( x +2 ) ( x -3 ) -2 (+5) ⋅ "-0" = -2 "-0"

Für x   x>3   3 + ⇒ f(x)= -2 ( x +2 ) ( x -3 ) -2 (+5) ⋅ "+0" = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-2 ( x +2 ) ( x -3 ) = -2 x 2 - x -6

-2 x 2 - x -6 = x 2 · ( - 2 x 2 ) x 2 · ( 1 - 1 x - 6 x 2 ) = - 2 x 2 1 - 1 x - 6 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 - x -6 = - 2 x 2 1 - 1 x - 6 x 2 0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,4x -2 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,4x -2 x 2 - - ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,4x -2 x 2 0 - 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides - ), bei y = -3 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides - )) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +3 ) 2 = ? x 2 +6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 +6x +9 = ?⋅ ( x ) x 2 +6x +9

Jetzt testen wir x ( x +3 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -3 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -3. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3 x 2 ( x +3 ) 2 = -3 x 2 x 2 +6x +9

-3 x 2 x 2 +6x +9 = x 2 · ( -3 ) x 2 · ( 1 + 6 x + 9 x 2 ) = -3 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 x 2 +6x +9 = -3 1 + 6 x + 9 x 2 -3 1 +0+0 = -3 1 = -3

Mit f(x)= -3 x 2 ( x +3 ) 2 sind also alle Bedingungen erfüllt

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = x 2 · e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= x 2 · e 0,3x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= x 2 · e 0,3x ·

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -x ( x +2 ) ( x +3 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +2 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +2 = 0 | -2
x1 = -2

2. Fall:

x +3 = 0 | -3
x2 = -3

also Definitionsmenge D=R\{ -3 ; -2 }

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -x ( x +2 ) ( x +3 ) +3 (-1) ⋅ "-0" = +3 "+0"

Für x   x>-3   -3 + ⇒ f(x)= -x ( x +2 ) ( x +3 ) +3 (-1) ⋅ "+0" = +3 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -x ( x +2 ) ( x +3 ) +2 "-0" ⋅ (+1) = +2 "-0" -

Für x   x>-2   -2 + ⇒ f(x)= -x ( x +2 ) ( x +3 ) +2 "+0" ⋅ (+1) = +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +