Aufgabenbeispiele von umwandeln in Scheitelform

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
f(x)= 2 x 2 - x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 - x = 0
x ( 2x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

2x -1 = 0 | +1
2x = 1 |:2
x2 = 1 2 = 0.5

L={0; 1 2 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
f(x)= 2 x 2 -8x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 -8x = 0
2 x ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -4 = 0 | +4
x2 = 4

L={0; 4 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+4 2 = 2 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(2|f(2)) mit f(2) = 2 2 2 -82 = 8 -16 = -8.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=4 , Scheitel: S(2|-8).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 -2x -5 .

Lösung einblenden

1. Weg

x 2 -2x -5

Man erweitert die ersten beiden Summanden ( x 2 -2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -2x durch 2x und quadriert diese Ergebnis -1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -2x +1 -1 -5

= ( x -1 ) 2 -1 -5

= ( x -1 ) 2 -6

Jetzt kann man den Scheitel leicht ablesen: S(1|-6).


2. Weg

Wir betrachten nun nur x 2 -2x . Deren Parabel sieht ja genau gleich aus wie x 2 -2x -5 nur um -5 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -2x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(1|f(1)).

f(1) = 1 2 -21 -5 = 1 -2 -5 = -6

also: S(1|-6).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= 2 x 2 +8x -2 .

Lösung einblenden

1. Weg

2 x 2 +8x -2

= 2( x 2 +4x ) -2

Man erweitert die ersten beiden Summanden ( x 2 +4x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 4x durch 2x und quadriert diese Ergebnis 2 zu 4. Diese 4 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 4, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 2( x 2 +4x +4 -4 ) -2

= 2( x 2 +4x +4 ) + 2 · ( -4 ) -2

= 2 ( x +2 ) 2 -8 -2

= 2 ( x +2 ) 2 -10

Jetzt kann man den Scheitel leicht ablesen: S(-2|-10).


2. Weg

Wir betrachten nun nur 2 x 2 +8x . Deren Parabel sieht ja genau gleich aus wie 2 x 2 +8x -2 nur um -2 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 2 x 2 +8x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

2 x 2 +8x = 0
2 x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-2|f(-2)).

f(-2) = 2 ( -2 ) 2 +8( -2 ) -2 = 8 -16 -2 = -10

also: S(-2|-10).


Extremwertaufgaben (Anwend.)

Beispiel:

Ein Rechteck hat den Umfang 340 cm. Wie breit muss es sein, damit der Flächeninhalt des Rechtecks am größten wird.

Lösung einblenden

1. Weg

- x 2 +170x

= -( x 2 -170x )

Man erweitert die ersten beiden Summanden ( x 2 -170x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -170x durch 2x und quadriert diese Ergebnis -85 zu 7225. Diese 7225 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 7225, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= -( x 2 -170x +7225 -7225 )

= -( x 2 -170x +7225 ) -1 · ( -7225 )

= - ( x -85 ) 2 +7225

= - ( x -85 ) 2 +7225

Jetzt kann man den Scheitel leicht ablesen: S(85|7225).


2. Weg

Von - x 2 +170x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

- x 2 +170x = 0
x ( -x +170 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +170 = 0 | -170
-x = -170 |:(-1 )
x2 = 170

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(85|f(85)).

f(85) = - 85 2 +17085 = -7225 +14450 = 7225

also: S(85|7225).


Für x=85 bekommen wir also mit 7225 einen extremalen Wert von - x 2 +170x