Aufgabenbeispiele von umwandeln in Scheitelform

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
f(x)= x 2 -3x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -3x = 0
x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

L={0; 3 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
f(x)= x 2 -10x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -10x = 0
x ( x -10 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -10 = 0 | +10
x2 = 10

L={0; 10 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+10 2 = 5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(5|f(5)) mit f(5) = 5 2 -105 = 25 -50 = -25.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=10 , Scheitel: S(5|-25).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 -6x +2 .

Lösung einblenden

1. Weg

x 2 -6x +2

Man erweitert die ersten beiden Summanden ( x 2 -6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -6x durch 2x und quadriert diese Ergebnis -3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -6x +9 -9 +2

= ( x -3 ) 2 -9 +2

= ( x -3 ) 2 -7

Jetzt kann man den Scheitel leicht ablesen: S(3|-7).


2. Weg

Wir betrachten nun nur x 2 -6x . Deren Parabel sieht ja genau gleich aus wie x 2 -6x +2 nur um 2 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -6x = 0
x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -6 = 0 | +6
x2 = 6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(3|f(3)).

f(3) = 3 2 -63 +2 = 9 -18 +2 = -7

also: S(3|-7).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 +6x +1 .

Lösung einblenden

1. Weg

x 2 +6x +1

Man erweitert die ersten beiden Summanden ( x 2 +6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 6x durch 2x und quadriert diese Ergebnis 3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +6x +9 -9 +1

= x 2 +6x +9 + 1 · ( -9 ) +1

= ( x +3 ) 2 -9 +1

= ( x +3 ) 2 -8

Jetzt kann man den Scheitel leicht ablesen: S(-3|-8).


2. Weg

Wir betrachten nun nur x 2 +6x . Deren Parabel sieht ja genau gleich aus wie x 2 +6x +1 nur um 1 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +6x = 0
x ( x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +6 = 0 | -6
x2 = -6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-3|f(-3)).

f(-3) = ( -3 ) 2 +6( -3 ) +1 = 9 -18 +1 = -8

also: S(-3|-8).


Extremwertaufgaben (Anwend.)

Beispiel:

Die Summe zweier Zahlen ist 20 . Wie groß muss man die erste Zahl wählen, damit das Produkt der beiden Zahlen größtmöglich wird? Wie groß ist dann dieses Produkt.

Lösung einblenden

1. Weg

- x 2 +20x

= -( x 2 -20x )

Man erweitert die ersten beiden Summanden ( x 2 -20x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -20x durch 2x und quadriert diese Ergebnis -10 zu 100. Diese 100 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 100, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= -( x 2 -20x +100 -100 )

= -( x 2 -20x +100 ) -1 · ( -100 )

= - ( x -10 ) 2 +100

= - ( x -10 ) 2 +100

Jetzt kann man den Scheitel leicht ablesen: S(10|100).


2. Weg

Von - x 2 +20x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

- x 2 +20x = 0
x ( -x +20 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +20 = 0 | -20
-x = -20 |:(-1 )
x2 = 20

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(10|f(10)).

f(10) = - 10 2 +2010 = -100 +200 = 100

also: S(10|100).


Für x=10 bekommen wir also mit 100 einen extremalen Wert von - x 2 +20x