Aufgabenbeispiele von umwandeln in Scheitelform

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
f(x)= x 2 -7x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -7x = 0
x ( x -7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -7 = 0 | +7
x2 = 7

L={0; 7 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
f(x)= x 2 +4x

Lösung einblenden

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +4x = 0
x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -4+0 2 = -2 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2|f(-2)) mit f(-2) = ( -2 ) 2 +4( -2 ) = 4 -8 = -4.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-4 und x2=0 , Scheitel: S(-2|-4).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 +8x -1 .

Lösung einblenden

1. Weg

x 2 +8x -1

Man erweitert die ersten beiden Summanden ( x 2 +8x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 8x durch 2x und quadriert diese Ergebnis 4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +8x +16 -16 -1

= ( x +4 ) 2 -16 -1

= ( x +4 ) 2 -17

Jetzt kann man den Scheitel leicht ablesen: S(-4|-17).


2. Weg

Wir betrachten nun nur x 2 +8x . Deren Parabel sieht ja genau gleich aus wie x 2 +8x -1 nur um -1 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +8x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +8x = 0
x ( x +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +8 = 0 | -8
x2 = -8

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-4|f(-4)).

f(-4) = ( -4 ) 2 +8( -4 ) -1 = 16 -32 -1 = -17

also: S(-4|-17).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 +2x +5 .

Lösung einblenden

1. Weg

x 2 +2x +5

Man erweitert die ersten beiden Summanden ( x 2 +2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 2x durch 2x und quadriert diese Ergebnis 1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +2x +1 -1 +5

= x 2 +2x +1 + 1 · ( -1 ) +5

= ( x +1 ) 2 -1 +5

= ( x +1 ) 2 +4

Jetzt kann man den Scheitel leicht ablesen: S(-1|4).


2. Weg

Wir betrachten nun nur x 2 +2x . Deren Parabel sieht ja genau gleich aus wie x 2 +2x +5 nur um 5 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +2x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-1|f(-1)).

f(-1) = ( -1 ) 2 +2( -1 ) +5 = 1 -2 +5 = 4

also: S(-1|4).


Extremwertaufgaben (Anwend.)

Beispiel:

Die Summe zweier Zahlen ist 90 . Wie groß muss man die erste Zahl wählen, damit das Produkt der beiden Zahlen größtmöglich wird? Wie groß ist dann dieses Produkt.

Lösung einblenden

1. Weg

- x 2 +90x

= -( x 2 -90x )

Man erweitert die ersten beiden Summanden ( x 2 -90x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -90x durch 2x und quadriert diese Ergebnis -45 zu 2025. Diese 2025 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 2025, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= -( x 2 -90x +2025 -2025 )

= -( x 2 -90x +2025 ) -1 · ( -2025 )

= - ( x -45 ) 2 +2025

= - ( x -45 ) 2 +2025

Jetzt kann man den Scheitel leicht ablesen: S(45|2025).


2. Weg

Von - x 2 +90x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

- x 2 +90x = 0
x ( -x +90 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +90 = 0 | -90
-x = -90 |:(-1 )
x2 = 90

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(45|f(45)).

f(45) = - 45 2 +9045 = -2025 +4050 = 2025

also: S(45|2025).


Für x=45 bekommen wir also mit 2025 einen extremalen Wert von - x 2 +90x