Aufgabenbeispiele von umwandeln in Scheitelform
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Nullstellen mit Nullprodukt
Beispiel:
Bestimme die Nullstellen der quadratischen Funktion f mit
Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
x2 | = |
L={
;
Nullstellen und Scheitel (Nullprodukt)
Beispiel:
Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
x2 | = |
L={
Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen = 1.5 und erhalten so den x-Wert des Scheitels.
Der Scheitel hat also die Koordinaten S(1.5|f(1.5)) mit f(1.5) = = = -9.
Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=3 , Scheitel: S(1.5|-9).
x²+bx+c -> Scheitelform
Beispiel:
Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit .
1. Weg
Man erweitert die ersten beiden Summanden ( ) zu einem 'binomischen Formel'-Term. Dazu teilt man die durch 2x und quadriert diese Ergebnis -3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(3|-7).
2. Weg
Wir betrachten nun nur . Deren Parabel sieht ja genau gleich aus wie nur um nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.
Von können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
x2 | = |
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(3|f(3)).
f(3) = = = -7
also: S(3|-7).
ax²+bx+c -> Scheitelform
Beispiel:
Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit .
1. Weg
=
Man erweitert die ersten beiden Summanden ( ) zu einem 'binomischen Formel'-Term. Dazu teilt man die durch 2x und quadriert diese Ergebnis 5 zu 25. Diese 25 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 25, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.
=
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(-5|-49).
2. Weg
Wir betrachten nun nur . Deren Parabel sieht ja genau gleich aus wie nur um nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.
Von können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
x2 | = |
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-5|f(-5)).
f(-5) = = = -49
also: S(-5|-49).
Extremwertaufgaben (Anwend.)
Beispiel:
Ein Rechteck hat den Umfang cm. Wie breit muss es sein, damit der Flächeninhalt des Rechtecks am größten wird.
1. Weg
=
Man erweitert die ersten beiden Summanden ( ) zu einem 'binomischen Formel'-Term. Dazu teilt man die durch 2x und quadriert diese Ergebnis -70 zu 4900. Diese 4900 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 4900, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.
=
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(70|4900).
2. Weg
Von können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= | | | ||
= | |:() | ||
x2 | = |
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(70|f(70)).
f(70) = = = 4900
also: S(70|4900).
Für x=70 bekommen wir also mit 4900 einen extremalen Wert von