Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 9 Schülerinnen und Schüler den katholischen Religionsunterricht, 6 den evangelischen, und 5 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 6 + 5=20
Hieraus ergibt sich für ...
rk: p=
ev: p= =
Eth: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine 6 zu würfeln?
| Ereignis | P |
|---|---|
| 6er -> 6er | |
| 6er -> keine_6 | |
| keine_6 -> 6er | |
| keine_6 -> keine_6 |
Einzel-Wahrscheinlichkeiten: 6er: ; keine_6: ;
Die relevanten Pfade sind:- '6er'-'6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'rot')=1- =
| Ereignis | P |
|---|---|
| rot -> rot -> rot | |
| rot -> rot -> nicht rot | |
| rot -> nicht rot -> rot | |
| rot -> nicht rot -> nicht rot | |
| nicht rot -> rot -> rot | |
| nicht rot -> rot -> nicht rot | |
| nicht rot -> nicht rot -> rot | |
| nicht rot -> nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: rot: ; nicht rot: ;
Die relevanten Pfade sind:- 'rot'-'nicht rot'-'nicht rot' (P=)
- 'nicht rot'-'rot'-'nicht rot' (P=)
- 'nicht rot'-'nicht rot'-'rot' (P=)
- 'rot'-'rot'-'nicht rot' (P=)
- 'rot'-'nicht rot'-'rot' (P=)
- 'nicht rot'-'rot'-'rot' (P=)
- 'rot'-'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal König"?
Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'
Einzel-Wahrscheinlichkeiten :"König": ; "nicht König": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal König' alle Möglichkeiten enthalten, außer eben kein 'König' bzw. 0 mal 'König'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'König')=1- =
| Ereignis | P |
|---|---|
| König -> König | |
| König -> nicht König | |
| nicht König -> König | |
| nicht König -> nicht König |
Einzel-Wahrscheinlichkeiten: König: ; nicht König: ;
Die relevanten Pfade sind:
'König'-'nicht König' (P=)
'nicht König'-'König' (P=)
'König'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 7 vom Typ Kreuz, 5 vom Typ Herz, 7 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Herz: ; Pik: ; Karo: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'
Einzel-Wahrscheinlichkeiten :"15": ; "nicht 15": ;
| Ereignis | P |
|---|---|
| 15 -> 15 | |
| 15 -> nicht 15 | |
| nicht 15 -> 15 | |
| nicht 15 -> nicht 15 |
Einzel-Wahrscheinlichkeiten: 15: ; nicht 15: ;
Die relevanten Pfade sind:
'15'-'15' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 29 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> 14 | |
| 13 -> 15 | |
| 14 -> 13 | |
| 14 -> 14 | |
| 14 -> 15 | |
| 15 -> 13 | |
| 15 -> 14 | |
| 15 -> 15 |
Einzel-Wahrscheinlichkeiten: 13: ; 14: ; 15: ;
Die relevanten Pfade sind:
'14'-'15' (P=)
'15'-'14' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Kombinatorik (ohne Binom.)
Beispiel:
Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 2 Hosen entscheiden. Für die Füße stehen ihr 7 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?
Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 2 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 2 = 6 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 7 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 2 ⋅ 7 = 42 Möglichkeiten ergeben.
Kombinatorik
Beispiel:
Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 5 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 7 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 5 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.
Für die Kategorie 'Vollmilch' gibt es 5 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 7 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 5 ⋅ 7 = 35 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 5 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 5 ⋅ 7 ⋅ 5 = 175 Möglichkeiten ergeben.
