Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'prim'-'nicht prim' (P= 1 8 )
  • 'prim'-'nicht prim'-'prim' (P= 1 8 )
  • 'nicht prim'-'prim'-'prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: rot: 18 37 ; nicht rot: 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

324 1369 = 324 1369


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 1 3 ; "nicht Ass": 2 3 ;

EreignisP
Ass -> Ass 1 15
Ass -> nicht Ass 4 15
nicht Ass -> Ass 4 15
nicht Ass -> nicht Ass 2 5

Einzel-Wahrscheinlichkeiten: Ass: 1 3 ; nicht Ass: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'Ass' (P= 1 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 15 = 1 15


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 7 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen höchstens 2 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 7 10 ; "nicht Mädchen": 3 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Mädchen' alle Möglichkeiten enthalten, außer eben 3 mal 'Mädchen'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'Mädchen')=1- 7 24 = 17 24

EreignisP
Mädchen -> Mädchen -> Mädchen 7 24
Mädchen -> Mädchen -> nicht Mädchen 7 40
Mädchen -> nicht Mädchen -> Mädchen 7 40
Mädchen -> nicht Mädchen -> nicht Mädchen 7 120
nicht Mädchen -> Mädchen -> Mädchen 7 40
nicht Mädchen -> Mädchen -> nicht Mädchen 7 120
nicht Mädchen -> nicht Mädchen -> Mädchen 7 120
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 120

Einzel-Wahrscheinlichkeiten: Mädchen: 7 10 ; nicht Mädchen: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'nicht Mädchen' (P= 7 40 )
'Mädchen'-'nicht Mädchen'-'Mädchen' (P= 7 40 )
'nicht Mädchen'-'Mädchen'-'Mädchen' (P= 7 40 )
'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 7 120 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 7 120 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 7 120 )
'nicht Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 120 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 40 + 7 40 + 7 40 + 7 120 + 7 120 + 7 120 + 1 120 = 17 24


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 2 rote und 7 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 9 1 8 7 7
= 1 9 1 4 7 7
= 1 36

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 8 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 4 25
1 -> 2 4 25
1 -> 3 2 25
2 -> 1 4 25
2 -> 2 4 25
2 -> 3 2 25
3 -> 1 2 25
3 -> 2 2 25
3 -> 3 1 25

Einzel-Wahrscheinlichkeiten: 1: 2 5 ; 2: 2 5 ; 3: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 4 25 )
  • '2'-'1' (P= 4 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 25 + 4 25 = 8 25


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 5 Schüler mit NWT-Profil, 9 Schüler mit sprachlichem Profil, 7 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 5 24 ; "nicht NWT": 19 24 ;

EreignisP
NWT -> NWT 5 138
NWT -> nicht NWT 95 552
nicht NWT -> NWT 95 552
nicht NWT -> nicht NWT 57 92

Einzel-Wahrscheinlichkeiten: NWT: 5 24 ; nicht NWT: 19 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht NWT'-'nicht NWT' (P= 57 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

57 92 = 57 92


Kombinatorik (ohne Binom.)

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 30 Schüler, in der 8b 21 Schüler und in der in der 8c 30 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 30 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 21 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 30 ⋅ 21 = 630 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 30 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 30 ⋅ 21 ⋅ 30 = 18900 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Eine bestimmte Variable soll im Computer mit 9 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 9 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 9 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 29 = 512 Möglichkeiten.