Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 7 Asse, 10 Könige, 2 Damen, und 5 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 10 + 2 + 5=24

Hieraus ergibt sich für ...

Ass: p= 7 24

König: p= 10 24 = 5 12

Dame: p= 2 24 = 1 12

Bube: p= 5 24

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er 2 9
nicht 3er -> 3er-Zahl 2 9
nicht 3er -> nicht 3er 4 9

Einzel-Wahrscheinlichkeiten: 3er-Zahl: 1 3 ; nicht 3er: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er' (P= 2 9 )
  • 'nicht 3er'-'3er-Zahl' (P= 2 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 = 4 9


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "mindestens 1 mal A"?

Lösung einblenden

Da ja ausschließlich nach 'A' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'A' und 'nicht A'

Einzel-Wahrscheinlichkeiten :"A": 1 2 ; "nicht A": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal A' alle Möglichkeiten enthalten, außer eben kein 'A' bzw. 0 mal 'A'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'A')=1- 1 4 = 3 4

EreignisP
A -> A 1 4
A -> nicht A 1 4
nicht A -> A 1 4
nicht A -> nicht A 1 4

Einzel-Wahrscheinlichkeiten: A: 1 2 ; nicht A: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'A'-'nicht A' (P= 1 4 )
  • 'nicht A'-'A' (P= 1 4 )
  • 'A'-'A' (P= 1 4 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 + 1 4 = 3 4


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; andere: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'andere'-'andere' (P= 11 70 )
'andere'-'deutsch'-'andere' (P= 11 70 )
'andere'-'andere'-'deutsch' (P= 11 70 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 70 + 11 70 + 11 70 = 33 70


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 3 vom Typ Kreuz, 3 vom Typ Herz, 8 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 190
Kreuz -> Herz 9 380
Kreuz -> Pik 6 95
Kreuz -> Karo 9 190
Herz -> Kreuz 9 380
Herz -> Herz 3 190
Herz -> Pik 6 95
Herz -> Karo 9 190
Pik -> Kreuz 6 95
Pik -> Herz 6 95
Pik -> Pik 14 95
Pik -> Karo 12 95
Karo -> Kreuz 9 190
Karo -> Herz 9 190
Karo -> Pik 12 95
Karo -> Karo 3 38

Einzel-Wahrscheinlichkeiten: Kreuz: 3 20 ; Herz: 3 20 ; Pik: 2 5 ; Karo: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 190 )
'Herz'-'Herz' (P= 3 190 )
'Pik'-'Pik' (P= 14 95 )
'Karo'-'Karo' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 190 + 3 190 + 14 95 + 3 38 = 49 190


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 7 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 11 7 10
= 2 11 7 5
= 14 55

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 29 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 35 117
13 -> 14 25 117
13 -> 15 5 117
14 -> 13 25 117
14 -> 14 5 39
14 -> 15 10 351
15 -> 13 5 117
15 -> 14 10 351
15 -> 15 1 351

Einzel-Wahrscheinlichkeiten: 13: 5 9 ; 14: 10 27 ; 15: 2 27 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'14'-'15' (P= 10 351 )
'15'-'14' (P= 10 351 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

10 351 + 10 351 = 20 351


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 8 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 5 ; "nicht 3": 4 5 ;

EreignisP
3 -> 3 1 25
3 -> nicht 3 4 25
nicht 3 -> 3 4 25
nicht 3 -> nicht 3 16 25

Einzel-Wahrscheinlichkeiten: 3: 1 5 ; nicht 3: 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'3' (P= 1 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 25 = 1 25


Kombinatorik (ohne Binom.)

Beispiel:

Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 8 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 8 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 8-fach verzweigt.

Es entstehen so also 8 ⋅ 8 ⋅ 8 = 83 = 512 Möglichkeiten.

Kombinatorik

Beispiel:

Petra hat sich ein 8-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 8 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.