Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 8 27

Einzel-Wahrscheinlichkeiten: 3er-Zahl: 1 3 ; nicht 3er-Zahl: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 1 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 1 27 = 7 27


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 2 5 ; "nicht blau": 3 5 ;

EreignisP
blau -> blau -> blau 8 125
blau -> blau -> nicht blau 12 125
blau -> nicht blau -> blau 12 125
blau -> nicht blau -> nicht blau 18 125
nicht blau -> blau -> blau 12 125
nicht blau -> blau -> nicht blau 18 125
nicht blau -> nicht blau -> blau 18 125
nicht blau -> nicht blau -> nicht blau 27 125

Einzel-Wahrscheinlichkeiten: blau: 2 5 ; nicht blau: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'blau'-'nicht blau' (P= 12 125 )
  • 'blau'-'nicht blau'-'blau' (P= 12 125 )
  • 'nicht blau'-'blau'-'blau' (P= 12 125 )
  • 'blau'-'blau'-'blau' (P= 8 125 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 125 + 12 125 + 12 125 + 8 125 = 44 125


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 4 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 5 ; "nicht Dame": 4 5 ;

EreignisP
Dame -> Dame 1 45
Dame -> nicht Dame 8 45
nicht Dame -> Dame 8 45
nicht Dame -> nicht Dame 28 45

Einzel-Wahrscheinlichkeiten: Dame: 1 5 ; nicht Dame: 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'Dame' (P= 1 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 45 = 1 45


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 4 vom Typ rot und 6 vom Typ blau. Es wird 3 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 1 30
rot -> rot -> blau 1 10
rot -> blau -> rot 1 10
rot -> blau -> blau 1 6
blau -> rot -> rot 1 10
blau -> rot -> blau 1 6
blau -> blau -> rot 1 6
blau -> blau -> blau 1 6

Einzel-Wahrscheinlichkeiten: rot: 2 5 ; blau: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'rot' (P= 1 30 )
'blau'-'blau'-'blau' (P= 1 6 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 30 + 1 6 = 1 5


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 4 kugel mit einer 2 und 7 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 7 20 ; "nicht 3": 13 20 ;

EreignisP
3 -> 3 21 190
3 -> nicht 3 91 380
nicht 3 -> 3 91 380
nicht 3 -> nicht 3 39 95

Einzel-Wahrscheinlichkeiten: 3: 7 20 ; nicht 3: 13 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'3' (P= 21 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 190 = 21 190


nur Summen

Beispiel:

In einer Urne sind 4 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 3 10 ; "nicht 3": 7 10 ;

EreignisP
3 -> 3 9 100
3 -> nicht 3 21 100
nicht 3 -> 3 21 100
nicht 3 -> nicht 3 49 100

Einzel-Wahrscheinlichkeiten: 3: 3 10 ; nicht 3: 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'3' (P= 9 100 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 100 = 9 100


Kombinatorik (ohne Binom.)

Beispiel:

Eine 5-stellige Zahl soll gewürfelt werden. Dabei wird einfach 5 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden

Lösung einblenden

Bei jedem der 5 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 ⋅ 6 = 65 = 7776 Möglichkeiten.

Kombinatorik

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 5 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 5er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 = 6720 Möglichkeiten, die 8 Möglichkeiten (SchülerIn) auf die 5 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 6720 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 6720 120 = 56 Möglichkeiten für 5er-Gruppen, die aus 8 Elementen (SchülerIn) gebildet werden.