Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p=
grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p=
gelb: Man erkennt einen Viertelkreis => p=
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 2 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal '6er')=1- =
Ereignis | P |
---|---|
6er -> 6er | |
6er -> nicht 6er | |
nicht 6er -> 6er | |
nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: 6er: ; nicht 6er: ;
Die relevanten Pfade sind:- '6er'-'nicht 6er' (P=)
- 'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'nicht 6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
Ereignis | P |
---|---|
Teiler -> Teiler -> Teiler | |
Teiler -> Teiler -> kein Teiler | |
Teiler -> kein Teiler -> Teiler | |
Teiler -> kein Teiler -> kein Teiler | |
kein Teiler -> Teiler -> Teiler | |
kein Teiler -> Teiler -> kein Teiler | |
kein Teiler -> kein Teiler -> Teiler | |
kein Teiler -> kein Teiler -> kein Teiler |
Einzel-Wahrscheinlichkeiten: Teiler: ; kein Teiler: ;
Die relevanten Pfade sind:- 'Teiler'-'Teiler'-'kein Teiler' (P=)
- 'Teiler'-'kein Teiler'-'Teiler' (P=)
- 'kein Teiler'-'Teiler'-'Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einer 8-ten Klasse gibt es 9 Schüler mit NWT-Profil, 10 Schüler mit sprachlichem Profil, 5 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
Ereignis | P |
---|---|
NWT -> NWT | |
NWT -> nicht NWT | |
nicht NWT -> NWT | |
nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: NWT: ; nicht NWT: ;
Die relevanten Pfade sind:
'nicht NWT'-'nicht NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal König und 1 mal Dame"?
Ereignis | P |
---|---|
Ass -> Ass | |
Ass -> König | |
Ass -> Dame | |
König -> Ass | |
König -> König | |
König -> Dame | |
Dame -> Ass | |
Dame -> König | |
Dame -> Dame |
Einzel-Wahrscheinlichkeiten: Ass: ; König: ; Dame: ;
Die relevanten Pfade sind:
'König'-'Dame' (P=)
'Dame'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
1 -> 5 | |
1 -> 6 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
2 -> 5 | |
2 -> 6 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
3 -> 5 | |
3 -> 6 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 | |
4 -> 5 | |
4 -> 6 | |
5 -> 1 | |
5 -> 2 | |
5 -> 3 | |
5 -> 4 | |
5 -> 5 | |
5 -> 6 | |
6 -> 1 | |
6 -> 2 | |
6 -> 3 | |
6 -> 4 | |
6 -> 5 | |
6 -> 6 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ; 5: ; 6: ;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 2 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 3 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal '6er')=1- =
Ereignis | P |
---|---|
6er -> 6er -> 6er | |
6er -> 6er -> nicht 6er | |
6er -> nicht 6er -> 6er | |
6er -> nicht 6er -> nicht 6er | |
nicht 6er -> 6er -> 6er | |
nicht 6er -> 6er -> nicht 6er | |
nicht 6er -> nicht 6er -> 6er | |
nicht 6er -> nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: 6er: ; nicht 6er: ;
Die relevanten Pfade sind:- '6er'-'6er'-'nicht 6er' (P=)
- '6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'6er'-'6er' (P=)
- '6er'-'nicht 6er'-'nicht 6er' (P=)
- 'nicht 6er'-'6er'-'nicht 6er' (P=)
- 'nicht 6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'nicht 6er'-'nicht 6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Kombinatorik (ohne Binom.)
Beispiel:
Petra hat sich ein 5-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 5 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten.
Kombinatorik
Beispiel:
Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 5 Hosen entscheiden. Für die Füße stehen ihr 3 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?
Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 5 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 5 = 15 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 3 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 5 ⋅ 3 = 45 Möglichkeiten ergeben.