Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einem Kartenstapel sind 4 Asse, 9 Könige, 2 Damen, und 5 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 9 + 2 + 5=20
Hieraus ergibt sich für ...
Ass: p= =
König: p=
Dame: p= =
Bube: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine durch 3 teilbare Zahl zu würfeln?
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> 3er-Zahl -> nicht 3er | |
| 3er-Zahl -> nicht 3er -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er -> nicht 3er | |
| nicht 3er -> 3er-Zahl -> 3er-Zahl | |
| nicht 3er -> 3er-Zahl -> nicht 3er | |
| nicht 3er -> nicht 3er -> 3er-Zahl | |
| nicht 3er -> nicht 3er -> nicht 3er |
Einzel-Wahrscheinlichkeiten: 3er-Zahl: ; nicht 3er: ;
Die relevanten Pfade sind:- '3er-Zahl'-'3er-Zahl'-'nicht 3er' (P=)
- '3er-Zahl'-'nicht 3er'-'3er-Zahl' (P=)
- 'nicht 3er'-'3er-Zahl'-'3er-Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine 6 zu würfeln?
| Ereignis | P |
|---|---|
| 6er -> 6er -> 6er | |
| 6er -> 6er -> keine_6 | |
| 6er -> keine_6 -> 6er | |
| 6er -> keine_6 -> keine_6 | |
| keine_6 -> 6er -> 6er | |
| keine_6 -> 6er -> keine_6 | |
| keine_6 -> keine_6 -> 6er | |
| keine_6 -> keine_6 -> keine_6 |
Einzel-Wahrscheinlichkeiten: 6er: ; keine_6: ;
Die relevanten Pfade sind:- '6er'-'keine_6'-'keine_6' (P=)
- 'keine_6'-'6er'-'keine_6' (P=)
- 'keine_6'-'keine_6'-'6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einer 8-ten Klasse gibt es 8 Schüler mit NWT-Profil, 4 Schüler mit sprachlichem Profil, 10 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 1 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
| Ereignis | P |
|---|---|
| NWT -> NWT | |
| NWT -> nicht NWT | |
| nicht NWT -> NWT | |
| nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: NWT: ; nicht NWT: ;
Die relevanten Pfade sind:
'NWT'-'nicht NWT' (P=)
'nicht NWT'-'NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 6 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: 3: ; nicht 3: ;
Die relevanten Pfade sind:
'3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> 8 | |
| 7 -> 9 | |
| 8 -> 7 | |
| 8 -> 8 | |
| 8 -> 9 | |
| 9 -> 7 | |
| 9 -> 8 | |
| 9 -> 9 |
Einzel-Wahrscheinlichkeiten: 7: ; 8: ; 9: ;
Die relevanten Pfade sind:
'7'-'8' (P=)
'8'-'7' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Kombinatorik (ohne Binom.)
Beispiel:
Eine 3-stellige Zahl soll gewürfelt werden. Dabei wird einfach 3 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden
Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.
Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.
Kombinatorik
Beispiel:
Eine 2-stellige Zahl soll gewürfelt werden. Dabei wird einfach 2 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden.
Bei jedem der 2 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 2 Ebenen immer 6-fach verzweigt.
Es entstehen so also 6 ⋅ 6 = 62 = 36 Möglichkeiten.
