Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 5 Schülerinnen und Schüler den katholischen Religionsunterricht, 8 den evangelischen, und 7 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 5 + 8 + 7=20

Hieraus ergibt sich für ...

rk: p= 5 20 = 1 4

ev: p= 8 20 = 2 5

Eth: p= 7 20

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 3er-Zahl' alle Möglichkeiten enthalten, außer eben 2 mal '3er-Zahl'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '3er-Zahl')=1- 1 9 = 8 9

EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er-Zahl 2 9
nicht 3er-Zahl -> 3er-Zahl 2 9
nicht 3er-Zahl -> nicht 3er-Zahl 4 9

Einzel-Wahrscheinlichkeiten: 3er-Zahl: 1 3 ; nicht 3er-Zahl: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'3er-Zahl' (P= 2 9 )
  • 'nicht 3er-Zahl'-'nicht 3er-Zahl' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 4 9 = 8 9


Ziehen mit Zurücklegen

Beispiel:

Beim Würfelspiel Mäxle würfelt man mit zwei Würfeln. Die größere Augenzahl nimmt man als Zehner, die kleinere als Einer (z.B. 3 und 5 ergibt 53). Ein Pasch (gleiche Zahlen bei beiden Würfeln) zählt mehr als alle anderen Ergebnisse. Lediglich ein Mäxle (eine 1 und ein 2) schlägt auch einen Pasch. Die beiden schlechtesten Ergebnisse sind also 31 und 32. Wie groß ist die Wahrscheinlichkeit dafür?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> höher 1 12
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> höher 1 12
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> höher 1 12
höher -> 1 1 12
höher -> 2 1 12
höher -> 3 1 12
höher -> höher 1 4

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; höher: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 36 )
  • '3'-'1' (P= 1 36 )
  • '2'-'3' (P= 1 36 )
  • '3'-'2' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote, 5 blaue , 7 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 1 4 ; "nicht schwarz": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal schwarz' alle Möglichkeiten enthalten, außer eben 2 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'schwarz')=1- 1 19 = 18 19

EreignisP
schwarz -> schwarz 1 19
schwarz -> nicht schwarz 15 76
nicht schwarz -> schwarz 15 76
nicht schwarz -> nicht schwarz 21 38

Einzel-Wahrscheinlichkeiten: schwarz: 1 4 ; nicht schwarz: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'schwarz'-'nicht schwarz' (P= 15 76 )
'nicht schwarz'-'schwarz' (P= 15 76 )
'nicht schwarz'-'nicht schwarz' (P= 21 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 76 + 15 76 + 21 38 = 18 19


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 7 Kugeln mit einer Eins beschriftet, 3 Kugeln mit einer Zwei, 6 mit Drei und 4 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 5 ergeben?

Lösung einblenden
EreignisP
1 -> 1 21 190
1 -> 2 21 380
1 -> 3 21 190
1 -> 4 7 95
2 -> 1 21 380
2 -> 2 3 190
2 -> 3 9 190
2 -> 4 3 95
3 -> 1 21 190
3 -> 2 9 190
3 -> 3 3 38
3 -> 4 6 95
4 -> 1 7 95
4 -> 2 3 95
4 -> 3 6 95
4 -> 4 3 95

Einzel-Wahrscheinlichkeiten: 1: 7 20 ; 2: 3 20 ; 3: 3 10 ; 4: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'4' (P= 7 95 )
'4'-'1' (P= 7 95 )
'2'-'3' (P= 9 190 )
'3'-'2' (P= 9 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 95 + 7 95 + 9 190 + 9 190 = 23 95


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 9
1 -> 2 5 36
1 -> 3 1 12
2 -> 1 5 36
2 -> 2 25 144
2 -> 3 5 48
3 -> 1 1 12
3 -> 2 5 48
3 -> 3 1 16

Einzel-Wahrscheinlichkeiten: 1: 1 3 ; 2: 5 12 ; 3: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 12 )
  • '3'-'1' (P= 1 12 )
  • '2'-'2' (P= 25 144 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 12 + 1 12 + 25 144 = 49 144


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 5 Kugeln mit einer Eins beschriftet, 3 Kugeln mit einer Zwei, 5 mit Drei und 7 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 5 ergeben?

Lösung einblenden
EreignisP
1 -> 1 1 19
1 -> 2 3 76
1 -> 3 5 76
1 -> 4 7 76
2 -> 1 3 76
2 -> 2 3 190
2 -> 3 3 76
2 -> 4 21 380
3 -> 1 5 76
3 -> 2 3 76
3 -> 3 1 19
3 -> 4 7 76
4 -> 1 7 76
4 -> 2 21 380
4 -> 3 7 76
4 -> 4 21 190

Einzel-Wahrscheinlichkeiten: 1: 1 4 ; 2: 3 20 ; 3: 1 4 ; 4: 7 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'4' (P= 7 76 )
'4'-'1' (P= 7 76 )
'2'-'3' (P= 3 76 )
'3'-'2' (P= 3 76 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 76 + 7 76 + 3 76 + 3 76 = 5 19


Kombinatorik (ohne Binom.)

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 8 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 7 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 8 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 8 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 7 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 8 ⋅ 7 = 56 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 8 ⋅ 7 ⋅ 8 = 448 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Petra hat sich ein 9-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 9 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 7 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 362880 Möglichkeiten.