Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 4 Asse, 6 Könige, 2 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 6 + 2 + 3=15

Hieraus ergibt sich für ...

Ass: p= 4 15

König: p= 6 15 = 2 5

Dame: p= 2 15

Bube: p= 3 15 = 1 5

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'nicht prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'nicht prim'-'prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 6 vom Typ rot und 4 vom Typ blau. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 27 125
rot -> rot -> blau 18 125
rot -> blau -> rot 18 125
rot -> blau -> blau 12 125
blau -> rot -> rot 18 125
blau -> rot -> blau 12 125
blau -> blau -> rot 12 125
blau -> blau -> blau 8 125

Einzel-Wahrscheinlichkeiten: rot: 3 5 ; blau: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot'-'rot' (P= 27 125 )
  • 'blau'-'blau'-'blau' (P= 8 125 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

27 125 + 8 125 = 7 25


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 7 rote, 9 blaue , 8 gelbe und 6 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 1 5 ; "nicht schwarz": 4 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'schwarz')=1- 92 145 = 53 145

EreignisP
schwarz -> schwarz 1 29
schwarz -> nicht schwarz 24 145
nicht schwarz -> schwarz 24 145
nicht schwarz -> nicht schwarz 92 145

Einzel-Wahrscheinlichkeiten: schwarz: 1 5 ; nicht schwarz: 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'schwarz'-'nicht schwarz' (P= 24 145 )
'nicht schwarz'-'schwarz' (P= 24 145 )
'schwarz'-'schwarz' (P= 1 29 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

24 145 + 24 145 + 1 29 = 53 145


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 3 vom Typ Kreuz, 3 vom Typ Herz, 2 vom Typ Pik und 4 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 22
Kreuz -> Herz 3 44
Kreuz -> Pik 1 22
Kreuz -> Karo 1 11
Herz -> Kreuz 3 44
Herz -> Herz 1 22
Herz -> Pik 1 22
Herz -> Karo 1 11
Pik -> Kreuz 1 22
Pik -> Herz 1 22
Pik -> Pik 1 66
Pik -> Karo 2 33
Karo -> Kreuz 1 11
Karo -> Herz 1 11
Karo -> Pik 2 33
Karo -> Karo 1 11

Einzel-Wahrscheinlichkeiten: Kreuz: 1 4 ; Herz: 1 4 ; Pik: 1 6 ; Karo: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 22 )
'Herz'-'Herz' (P= 1 22 )
'Pik'-'Pik' (P= 1 66 )
'Karo'-'Karo' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 22 + 1 22 + 1 66 + 1 11 = 13 66


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 24 21 23
= 3 8 7 23
= 21 184

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?

Lösung einblenden

Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'

Einzel-Wahrscheinlichkeiten :"9": 2 5 ; "nicht 9": 3 5 ;

EreignisP
9 -> 9 2 15
9 -> nicht 9 4 15
nicht 9 -> 9 4 15
nicht 9 -> nicht 9 1 3

Einzel-Wahrscheinlichkeiten: 9: 2 5 ; nicht 9: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'9'-'9' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 = 2 15


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal König und 1 mal Dame"?

Lösung einblenden
EreignisP
Ass -> Ass 2 15
Ass -> König 4 45
Ass -> Dame 8 45
König -> Ass 4 45
König -> König 1 45
König -> Dame 4 45
Dame -> Ass 8 45
Dame -> König 4 45
Dame -> Dame 2 15

Einzel-Wahrscheinlichkeiten: Ass: 2 5 ; König: 1 5 ; Dame: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'König'-'Dame' (P= 4 45 )
'Dame'-'König' (P= 4 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 45 + 4 45 = 8 45


Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin war bei 8 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.

Kombinatorik

Beispiel:

Es findet ein Staffellauf im Biathlon der Herren statt. Der Trainer muss 3 Starter und auch die Reihenfolge der Starter nennen. In seinem Team sind 8 geeignete Kandidaten.Wie viele Startmöglichkeiten gibt es?

Lösung einblenden

Für die erste Stelle ist jede(r) Kandidat möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende Kandidat nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 8 ⋅ 7 ⋅ 6 = 336 Möglichkeiten.