Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 6 blaue, 2 grüne, 6 gelbe und 6 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 6 + 2 + 6 + 6=20

Hieraus ergibt sich für ...

blau: p= 6 20 = 3 10

grün: p= 2 20 = 1 10

gelb: p= 6 20 = 3 10

rot: p= 6 20 = 3 10

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 9 16
rot -> blau 3 16
blau -> rot 3 16
blau -> blau 1 16

Einzel-Wahrscheinlichkeiten: rot: 3 4 ; blau: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 3 16 )
  • 'blau'-'rot' (P= 3 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 = 3 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 3 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'prim'-'prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 = 1 8


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote und 7 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 10 ; "nicht rot": 7 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 1 15 = 14 15

EreignisP
rot -> rot 1 15
rot -> nicht rot 7 30
nicht rot -> rot 7 30
nicht rot -> nicht rot 7 15

Einzel-Wahrscheinlichkeiten: rot: 3 10 ; nicht rot: 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 7 30 )
'nicht rot'-'rot' (P= 7 30 )
'nicht rot'-'nicht rot' (P= 7 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 30 + 7 30 + 7 15 = 14 15


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?

Lösung einblenden
EreignisP
7 -> 7 2 15
7 -> 8 8 45
7 -> 9 4 45
8 -> 7 8 45
8 -> 8 2 15
8 -> 9 4 45
9 -> 7 4 45
9 -> 8 4 45
9 -> 9 1 45

Einzel-Wahrscheinlichkeiten: 7: 2 5 ; 8: 2 5 ; 9: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'8'-'9' (P= 4 45 )
'9'-'8' (P= 4 45 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 45 + 4 45 = 8 45


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 24 26
= 3 9 8 26
= 4 39

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 4 Kugeln, die mit einer 1 beschriftet sind, 3 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?

Lösung einblenden
EreignisP
1 -> 1 4 25
1 -> 2 3 25
1 -> 3 3 25
2 -> 1 3 25
2 -> 2 9 100
2 -> 3 9 100
3 -> 1 3 25
3 -> 2 9 100
3 -> 3 9 100

Einzel-Wahrscheinlichkeiten: 1: 2 5 ; 2: 3 10 ; 3: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 3 25 )
  • '3'-'1' (P= 3 25 )
  • '2'-'2' (P= 9 100 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 25 + 3 25 + 9 100 = 33 100


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'nicht prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'prim'-'nicht prim' (P= 1 8 )
  • 'nicht prim'-'nicht prim'-'prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Kombinatorik (ohne Binom.)

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 3 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 6 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 3 = 18 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 3 ⋅ 6 = 108 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Eine 4-stellige Zahl soll gewürfelt werden. Dabei wird einfach 4 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden.

Lösung einblenden

Bei jedem der 4 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 = 64 = 1296 Möglichkeiten.