Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 1 4 ; "nicht gelb": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'gelb')=1- 1 16 = 15 16

EreignisP
gelb -> gelb 1 16
gelb -> nicht gelb 3 16
nicht gelb -> gelb 3 16
nicht gelb -> nicht gelb 9 16

Einzel-Wahrscheinlichkeiten: gelb: 1 4 ; nicht gelb: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'gelb'-'nicht gelb' (P= 3 16 )
  • 'nicht gelb'-'gelb' (P= 3 16 )
  • 'nicht gelb'-'nicht gelb' (P= 9 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 9 16 = 15 16


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "höchstens 1 mal A"?

Lösung einblenden

Da ja ausschließlich nach 'A' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'A' und 'nicht A'

Einzel-Wahrscheinlichkeiten :"A": 3 8 ; "nicht A": 5 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal A' alle Möglichkeiten enthalten, außer eben 2 mal 'A'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'A')=1- 9 64 = 55 64

EreignisP
A -> A 9 64
A -> nicht A 15 64
nicht A -> A 15 64
nicht A -> nicht A 25 64

Einzel-Wahrscheinlichkeiten: A: 3 8 ; nicht A: 5 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'A'-'nicht A' (P= 15 64 )
  • 'nicht A'-'A' (P= 15 64 )
  • 'nicht A'-'nicht A' (P= 25 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 64 + 15 64 + 25 64 = 55 64


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 9 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 1 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 21 55
Mädchen -> Mädchen -> Jungs 9 55
Mädchen -> Jungs -> Mädchen 9 55
Mädchen -> Jungs -> Jungs 9 220
Jungs -> Mädchen -> Mädchen 9 55
Jungs -> Mädchen -> Jungs 9 220
Jungs -> Jungs -> Mädchen 9 220
Jungs -> Jungs -> Jungs 1 220

Einzel-Wahrscheinlichkeiten: Mädchen: 3 4 ; Jungs: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Jungs'-'Jungs' (P= 9 220 )
'Jungs'-'Mädchen'-'Jungs' (P= 9 220 )
'Jungs'-'Jungs'-'Mädchen' (P= 9 220 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 220 + 9 220 + 9 220 = 27 220


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 2 Karten der Farbe Kreuz, 4 der Farbe Pik, 10 der Farbe Herz und 4 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Pik"?

Lösung einblenden

Da ja ausschließlich nach 'Pik' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Pik' und 'nicht Pik'

Einzel-Wahrscheinlichkeiten :"Pik": 1 5 ; "nicht Pik": 4 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Pik' alle Möglichkeiten enthalten, außer eben kein 'Pik' bzw. 0 mal 'Pik'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Pik')=1- 12 19 = 7 19

EreignisP
Pik -> Pik 3 95
Pik -> nicht Pik 16 95
nicht Pik -> Pik 16 95
nicht Pik -> nicht Pik 12 19

Einzel-Wahrscheinlichkeiten: Pik: 1 5 ; nicht Pik: 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Pik'-'nicht Pik' (P= 16 95 )
'nicht Pik'-'Pik' (P= 16 95 )
'Pik'-'Pik' (P= 3 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 95 + 16 95 + 3 95 = 7 19


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 3 rote und 9 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 12 2 11 1 10 9 9
= 1 2 1 11 1 10 3 3
= 1 220

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 6 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 18 95
1 -> 2 27 190
1 -> 3 9 76
2 -> 1 27 190
2 -> 2 3 38
2 -> 3 3 38
3 -> 1 9 76
3 -> 2 3 38
3 -> 3 1 19

Einzel-Wahrscheinlichkeiten: 1: 9 20 ; 2: 3 10 ; 3: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 9 76 )
'3'-'1' (P= 9 76 )
'2'-'2' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 76 + 9 76 + 3 38 = 6 19


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 11 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 13 11 12
= 1 13 11 6
= 11 78

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Kombinatorik (ohne Binom.)

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 27 Schüler, in der 8b 21 Schüler und in der in der 8c 27 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 27 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 21 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 27 ⋅ 21 = 567 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 27 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 27 ⋅ 21 ⋅ 27 = 15309 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 30 Schüler, in der 8b 27 Schüler und in der in der 8c 30 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 30 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 27 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 30 ⋅ 27 = 810 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 30 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 30 ⋅ 27 ⋅ 30 = 24300 Möglichkeiten ergeben.