Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 9 blaue, 6 grüne, 4 gelbe und 5 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 6 + 4 + 5=24
Hieraus ergibt sich für ...
blau: p= =
grün: p= =
gelb: p= =
rot: p=
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 2 rote, 3 gelbe, 7 blaue und 3 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal gelb"?
Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'
Einzel-Wahrscheinlichkeiten :"gelb": ; "nicht gelb": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal gelb' alle Möglichkeiten enthalten, außer eben kein 'gelb' bzw. 0 mal 'gelb'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'gelb')=1- =
Ereignis | P |
---|---|
gelb -> gelb | |
gelb -> nicht gelb | |
nicht gelb -> gelb | |
nicht gelb -> nicht gelb |
Einzel-Wahrscheinlichkeiten: gelb: ; nicht gelb: ;
Die relevanten Pfade sind:- 'gelb'-'nicht gelb' (P=)
- 'nicht gelb'-'gelb' (P=)
- 'gelb'-'gelb' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 5 Kugeln, die mit einer 1 beschriftet sind, 8 2er und 7 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 4 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Ass"?
Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'
Einzel-Wahrscheinlichkeiten :"Ass": ; "nicht Ass": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Ass' alle Möglichkeiten enthalten, außer eben 2 mal 'Ass'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'Ass')=1- =
Ereignis | P |
---|---|
Ass -> Ass | |
Ass -> nicht Ass | |
nicht Ass -> Ass | |
nicht Ass -> nicht Ass |
Einzel-Wahrscheinlichkeiten: Ass: ; nicht Ass: ;
Die relevanten Pfade sind:
'Ass'-'nicht Ass' (P=)
'nicht Ass'-'Ass' (P=)
'nicht Ass'-'nicht Ass' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind verschiedene Kugeln, 2 vom Typ rot, 7 vom Typ blau, 4 vom Typ gelb und 7 vom Typ schwarz. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?
Ereignis | P |
---|---|
rot -> rot | |
rot -> blau | |
rot -> gelb | |
rot -> schwarz | |
blau -> rot | |
blau -> blau | |
blau -> gelb | |
blau -> schwarz | |
gelb -> rot | |
gelb -> blau | |
gelb -> gelb | |
gelb -> schwarz | |
schwarz -> rot | |
schwarz -> blau | |
schwarz -> gelb | |
schwarz -> schwarz |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ; gelb: ; schwarz: ;
Die relevanten Pfade sind:
'rot'-'rot' (P=)
'blau'-'blau' (P=)
'gelb'-'gelb' (P=)
'schwarz'-'schwarz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 5.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 29 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Ereignis | P |
---|---|
13 -> 13 | |
13 -> 14 | |
13 -> 15 | |
14 -> 13 | |
14 -> 14 | |
14 -> 15 | |
15 -> 13 | |
15 -> 14 | |
15 -> 15 |
Einzel-Wahrscheinlichkeiten: 13: ; 14: ; 15: ;
Die relevanten Pfade sind:
'14'-'15' (P=)
'15'-'14' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ;
Die relevanten Pfade sind:- '2'-'3' (P=)
- '3'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Kombinatorik (ohne Binom.)
Beispiel:
Eine 5-stellige Zahl soll gewürfelt werden. Dabei wird einfach 5 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden
Bei jedem der 5 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 6-fach verzweigt.
Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 ⋅ 6 = 65 = 7776 Möglichkeiten.
Kombinatorik
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 2 Schülerinnen. Diese möchte sie zufällig aus der 25-köpfigen Sportgruppe losen. Wie viele verschiedene 2er-Gruppen sind so möglich?
Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 25 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 24 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 25 ⋅ 24 = 600 Möglichkeiten, die 25 Möglichkeiten (Schülerin) auf die 2 "Ziehungen" (geloste) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 2 ⋅ 1 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.
Wir müssen deswegen die 600 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 300 Möglichkeiten für 2er-Gruppen, die aus 25 Elementen (Schülerin) gebildet werden.