Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 5 Schülerinnen und Schüler den katholischen Religionsunterricht, 9 den evangelischen, und 6 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 5 + 9 + 6=20
Hieraus ergibt sich für ...
rk: p= =
ev: p=
Eth: p= =
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ereignis | P |
---|---|
rot -> rot | |
rot -> blau | |
blau -> rot | |
blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:- 'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 7 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
1 -> 5 | |
1 -> 6 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
2 -> 5 | |
2 -> 6 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
3 -> 5 | |
3 -> 6 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 | |
4 -> 5 | |
4 -> 6 | |
5 -> 1 | |
5 -> 2 | |
5 -> 3 | |
5 -> 4 | |
5 -> 5 | |
5 -> 6 | |
6 -> 1 | |
6 -> 2 | |
6 -> 3 | |
6 -> 4 | |
6 -> 5 | |
6 -> 6 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ; 5: ; 6: ;
Die relevanten Pfade sind:- '1'-'6' (P=)
- '6'-'1' (P=)
- '2'-'5' (P=)
- '5'-'2' (P=)
- '3'-'4' (P=)
- '4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 8 vom Typ Kreuz, 7 vom Typ Herz, 8 vom Typ Pik und 7 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?
Ereignis | P |
---|---|
Kreuz -> Kreuz | |
Kreuz -> Herz | |
Kreuz -> Pik | |
Kreuz -> Karo | |
Herz -> Kreuz | |
Herz -> Herz | |
Herz -> Pik | |
Herz -> Karo | |
Pik -> Kreuz | |
Pik -> Herz | |
Pik -> Pik | |
Pik -> Karo | |
Karo -> Kreuz | |
Karo -> Herz | |
Karo -> Pik | |
Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Herz: ; Pik: ; Karo: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 5 Karten der Farbe Kreuz, 10 der Farbe Pik, 2 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Kreuz"?
Da ja ausschließlich nach 'Kreuz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Kreuz' und 'nicht Kreuz'
Einzel-Wahrscheinlichkeiten :"Kreuz": ; "nicht Kreuz": ;
Ereignis | P |
---|---|
Kreuz -> Kreuz | |
Kreuz -> nicht Kreuz | |
nicht Kreuz -> Kreuz | |
nicht Kreuz -> nicht Kreuz |
Einzel-Wahrscheinlichkeiten: Kreuz: ; nicht Kreuz: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:- '1'-'4' (P=)
- '4'-'1' (P=)
- '2'-'3' (P=)
- '3'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 2 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 3 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal '6er')=1- =
Ereignis | P |
---|---|
6er -> 6er -> 6er | |
6er -> 6er -> nicht 6er | |
6er -> nicht 6er -> 6er | |
6er -> nicht 6er -> nicht 6er | |
nicht 6er -> 6er -> 6er | |
nicht 6er -> 6er -> nicht 6er | |
nicht 6er -> nicht 6er -> 6er | |
nicht 6er -> nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: 6er: ; nicht 6er: ;
Die relevanten Pfade sind:- '6er'-'6er'-'nicht 6er' (P=)
- '6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'6er'-'6er' (P=)
- '6er'-'nicht 6er'-'nicht 6er' (P=)
- 'nicht 6er'-'6er'-'nicht 6er' (P=)
- 'nicht 6er'-'nicht 6er'-'6er' (P=)
- 'nicht 6er'-'nicht 6er'-'nicht 6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Kombinatorik (ohne Binom.)
Beispiel:
Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 25 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 5 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?
Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 25 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 24 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 23 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 25 ⋅ 24 ⋅ 23 ⋅ 22 ⋅ 21 = 6375600 Möglichkeiten.
Kombinatorik
Beispiel:
Eine Mathelehrerin verlost unter den 10 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 10 ⋅ 9 = 90 Möglichkeiten, die 10 Möglichkeiten (SchülerIn) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 2 ⋅ 1 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.
Wir müssen deswegen die 90 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 45 Möglichkeiten für 2er-Gruppen, die aus 10 Elementen (SchülerIn) gebildet werden.