Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 7 Schülerinnen und Schüler den katholischen Religionsunterricht, 8 den evangelischen, und 5 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 8 + 5=20

Hieraus ergibt sich für ...

rk: p= 7 20

ev: p= 8 20 = 2 5

Eth: p= 5 20 = 1 4

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 6 rote, 6 gelbe, 2 blaue und 6 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 10 ; "nicht rot": 7 10 ;

EreignisP
rot -> rot 9 100
rot -> nicht rot 21 100
nicht rot -> rot 21 100
nicht rot -> nicht rot 49 100

Einzel-Wahrscheinlichkeiten: rot: 3 10 ; nicht rot: 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 9 100 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 100 = 9 100


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 4 rote und 6 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 5 ; "nicht rot": 3 5 ;

EreignisP
rot -> rot -> rot 8 125
rot -> rot -> nicht rot 12 125
rot -> nicht rot -> rot 12 125
rot -> nicht rot -> nicht rot 18 125
nicht rot -> rot -> rot 12 125
nicht rot -> rot -> nicht rot 18 125
nicht rot -> nicht rot -> rot 18 125
nicht rot -> nicht rot -> nicht rot 27 125

Einzel-Wahrscheinlichkeiten: rot: 2 5 ; nicht rot: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot'-'nicht rot' (P= 12 125 )
  • 'rot'-'nicht rot'-'rot' (P= 12 125 )
  • 'nicht rot'-'rot'-'rot' (P= 12 125 )
  • 'rot'-'rot'-'rot' (P= 8 125 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 125 + 12 125 + 12 125 + 8 125 = 44 125


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 3 7
rot -> blau 5 21
blau -> rot 5 21
blau -> blau 2 21

Einzel-Wahrscheinlichkeiten: rot: 2 3 ; blau: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 3 7 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 7 = 3 7


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 5 vom Typ Kreuz, 2 vom Typ Herz, 5 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 2 21
Kreuz -> Herz 1 21
Kreuz -> Pik 5 42
Kreuz -> Karo 1 14
Herz -> Kreuz 1 21
Herz -> Herz 1 105
Herz -> Pik 1 21
Herz -> Karo 1 35
Pik -> Kreuz 5 42
Pik -> Herz 1 21
Pik -> Pik 2 21
Pik -> Karo 1 14
Karo -> Kreuz 1 14
Karo -> Herz 1 35
Karo -> Pik 1 14
Karo -> Karo 1 35

Einzel-Wahrscheinlichkeiten: Kreuz: 1 3 ; Herz: 2 15 ; Pik: 1 3 ; Karo: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 2 21 )
'Herz'-'Herz' (P= 1 105 )
'Pik'-'Pik' (P= 2 21 )
'Karo'-'Karo' (P= 1 35 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 21 + 1 105 + 2 21 + 1 35 = 8 35


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 9 2 8 6 7
= 3 3 2 4 1 7
= 1 14

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; 4: 1 6 ; 5: 1 6 ; 6: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 1 36 )
  • '2'-'1' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 = 1 18


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 6 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 1 4 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'4' (P= 1 32 )
  • '4'-'2' (P= 1 32 )
  • '3'-'3' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 32 + 1 32 + 1 64 = 5 64


Kombinatorik (ohne Binom.)

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 8 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 7 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 7 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 8 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 7 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 8 ⋅ 7 = 56 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 7 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 8 ⋅ 7 ⋅ 7 = 392 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 5 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 6 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 6 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 5 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 6 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 5 ⋅ 6 = 30 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 5 ⋅ 6 ⋅ 6 = 180 Möglichkeiten ergeben.