Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: p= 3 4

grün: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote, 3 gelbe, 8 blaue und 6 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 20 ; "nicht rot": 17 20 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 9 400 = 391 400

EreignisP
rot -> rot 9 400
rot -> nicht rot 51 400
nicht rot -> rot 51 400
nicht rot -> nicht rot 289 400

Einzel-Wahrscheinlichkeiten: rot: 3 20 ; nicht rot: 17 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 51 400 )
  • 'nicht rot'-'rot' (P= 51 400 )
  • 'nicht rot'-'nicht rot' (P= 289 400 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

51 400 + 51 400 + 289 400 = 391 400


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 18 37 ; "nicht rot": 19 37 ;

EreignisP
rot -> rot 324 1369
rot -> nicht rot 342 1369
nicht rot -> rot 342 1369
nicht rot -> nicht rot 361 1369

Einzel-Wahrscheinlichkeiten: rot: 18 37 ; nicht rot: 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

324 1369 = 324 1369


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 3 ; "nicht Dame": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Dame' alle Möglichkeiten enthalten, außer eben 2 mal 'Dame'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Dame')=1- 1 15 = 14 15

EreignisP
Dame -> Dame 1 15
Dame -> nicht Dame 4 15
nicht Dame -> Dame 4 15
nicht Dame -> nicht Dame 2 5

Einzel-Wahrscheinlichkeiten: Dame: 1 3 ; nicht Dame: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'nicht Dame' (P= 4 15 )
'nicht Dame'-'Dame' (P= 4 15 )
'nicht Dame'-'nicht Dame' (P= 2 5 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 + 2 5 = 14 15


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 1 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 3 ; "nicht Dame": 2 3 ;

EreignisP
Dame -> Dame 1 15
Dame -> nicht Dame 4 15
nicht Dame -> Dame 4 15
nicht Dame -> nicht Dame 2 5

Einzel-Wahrscheinlichkeiten: Dame: 1 3 ; nicht Dame: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'nicht Dame' (P= 4 15 )
'nicht Dame'-'Dame' (P= 4 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 = 8 15


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 9 64
1 -> 3 3 64
1 -> 4 3 64
2 -> 1 9 64
2 -> 2 9 64
2 -> 3 3 64
2 -> 4 3 64
3 -> 1 3 64
3 -> 2 3 64
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 3 64
4 -> 2 3 64
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 3 8 ; 2: 3 8 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 3 64 )
  • '3'-'1' (P= 3 64 )
  • '2'-'2' (P= 9 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 + 9 64 = 15 64


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "1 mal A und 1 mal C"?

Lösung einblenden
EreignisP
A -> A 9 64
A -> B 9 64
A -> C 3 64
A -> D 3 64
B -> A 9 64
B -> B 9 64
B -> C 3 64
B -> D 3 64
C -> A 3 64
C -> B 3 64
C -> C 1 64
C -> D 1 64
D -> A 3 64
D -> B 3 64
D -> C 1 64
D -> D 1 64

Einzel-Wahrscheinlichkeiten: A: 3 8 ; B: 3 8 ; C: 1 8 ; D: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'A'-'C' (P= 3 64 )
  • 'C'-'A' (P= 3 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 = 3 32


Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin war bei 4 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 4 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 7 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 7 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 7 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 7 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 7 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 7 ⋅ 7 = 49 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 7 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 7 ⋅ 7 ⋅ 7 = 343 Möglichkeiten ergeben.