Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 3 blaue, 5 grüne, 1 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 5 + 1 + 3=12

Hieraus ergibt sich für ...

blau: p= 3 12 = 1 4

grün: p= 5 12

gelb: p= 1 12

rot: p= 3 12 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 25 64
rot -> blau 15 64
blau -> rot 15 64
blau -> blau 9 64

Einzel-Wahrscheinlichkeiten: rot: 5 8 ; blau: 3 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 15 64 )
  • 'blau'-'rot' (P= 15 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 64 + 15 64 = 15 32


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 6 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 9 64
1 -> 3 3 64
1 -> 4 3 64
2 -> 1 9 64
2 -> 2 9 64
2 -> 3 3 64
2 -> 4 3 64
3 -> 1 3 64
3 -> 2 3 64
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 3 64
4 -> 2 3 64
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 3 8 ; 2: 3 8 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'4' (P= 3 64 )
  • '4'-'2' (P= 3 64 )
  • '3'-'3' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 + 1 64 = 7 64


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 2 vom Typ Kreuz, 10 vom Typ Herz, 2 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 190
Kreuz -> Herz 1 19
Kreuz -> Pik 1 95
Kreuz -> Karo 3 95
Herz -> Kreuz 1 19
Herz -> Herz 9 38
Herz -> Pik 1 19
Herz -> Karo 3 19
Pik -> Kreuz 1 95
Pik -> Herz 1 19
Pik -> Pik 1 190
Pik -> Karo 3 95
Karo -> Kreuz 3 95
Karo -> Herz 3 19
Karo -> Pik 3 95
Karo -> Karo 3 38

Einzel-Wahrscheinlichkeiten: Kreuz: 1 10 ; Herz: 1 2 ; Pik: 1 10 ; Karo: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 190 )
'Herz'-'Herz' (P= 9 38 )
'Pik'-'Pik' (P= 1 190 )
'Karo'-'Karo' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 190 + 9 38 + 1 190 + 3 38 = 31 95


Ziehen ohne Zurücklegen

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 0 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; andere: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'andere'-'andere'-'andere' (P= 11 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 28 = 11 28


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 2 26 24 25
= 3 9 2 13 4 25
= 8 975

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 5 11
13 -> 14 25 154
13 -> 15 5 77
14 -> 13 25 154
14 -> 14 10 231
14 -> 15 5 231
15 -> 13 5 77
15 -> 14 5 231
15 -> 15 1 231

Einzel-Wahrscheinlichkeiten: 13: 15 22 ; 14: 5 22 ; 15: 1 11 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'14' (P= 25 154 )
'14'-'13' (P= 25 154 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 154 + 25 154 = 25 77


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Karten der Farbe Kreuz, 10 der Farbe Pik, 6 der Farbe Herz und 4 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Karo"?

Lösung einblenden

Da ja ausschließlich nach 'Karo' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Karo' und 'nicht Karo'

Einzel-Wahrscheinlichkeiten :"Karo": 1 6 ; "nicht Karo": 5 6 ;

EreignisP
Karo -> Karo 1 46
Karo -> nicht Karo 10 69
nicht Karo -> Karo 10 69
nicht Karo -> nicht Karo 95 138

Einzel-Wahrscheinlichkeiten: Karo: 1 6 ; nicht Karo: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Karo'-'Karo' (P= 1 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 46 = 1 46


Kombinatorik (ohne Binom.)

Beispiel:

Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.

Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 4 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 4 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 4-fach verzweigt.

Es entstehen so also 4 ⋅ 4 ⋅ 4 ⋅ 4 = 44 = 256 Möglichkeiten.