Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal Zahl"?

Lösung einblenden

Da ja ausschließlich nach 'Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Zahl' und 'nicht Zahl'

Einzel-Wahrscheinlichkeiten :"Zahl": 1 2 ; "nicht Zahl": 1 2 ;

EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> nicht Zahl 1 8
Zahl -> nicht Zahl -> Zahl 1 8
Zahl -> nicht Zahl -> nicht Zahl 1 8
nicht Zahl -> Zahl -> Zahl 1 8
nicht Zahl -> Zahl -> nicht Zahl 1 8
nicht Zahl -> nicht Zahl -> Zahl 1 8
nicht Zahl -> nicht Zahl -> nicht Zahl 1 8

Einzel-Wahrscheinlichkeiten: Zahl: 1 2 ; nicht Zahl: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'nicht Zahl'-'nicht Zahl' (P= 1 8 )
  • 'nicht Zahl'-'Zahl'-'nicht Zahl' (P= 1 8 )
  • 'nicht Zahl'-'nicht Zahl'-'Zahl' (P= 1 8 )
  • 'nicht Zahl'-'nicht Zahl'-'nicht Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 = 1 2


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 7 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; 4: 1 6 ; 5: 1 6 ; 6: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'6' (P= 1 36 )
  • '6'-'1' (P= 1 36 )
  • '2'-'5' (P= 1 36 )
  • '5'-'2' (P= 1 36 )
  • '3'-'4' (P= 1 36 )
  • '4'-'3' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 8 rote, 10 blaue , 7 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 1 6 ; "nicht schwarz": 5 6 ;

EreignisP
schwarz -> schwarz 2 87
schwarz -> nicht schwarz 25 174
nicht schwarz -> schwarz 25 174
nicht schwarz -> nicht schwarz 20 29

Einzel-Wahrscheinlichkeiten: schwarz: 1 6 ; nicht schwarz: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'schwarz'-'nicht schwarz' (P= 25 174 )
'nicht schwarz'-'schwarz' (P= 25 174 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 174 + 25 174 = 25 87


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?

Lösung einblenden
EreignisP
7 -> 7 1 11
7 -> 8 4 33
7 -> 9 4 33
8 -> 7 4 33
8 -> 8 1 11
8 -> 9 4 33
9 -> 7 4 33
9 -> 8 4 33
9 -> 9 1 11

Einzel-Wahrscheinlichkeiten: 7: 1 3 ; 8: 1 3 ; 9: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'8'-'9' (P= 4 33 )
'9'-'8' (P= 4 33 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 33 + 4 33 = 8 33


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 8 kugel mit einer 2 und 6 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 3 38
1 -> 2 12 95
1 -> 3 9 95
2 -> 1 12 95
2 -> 2 14 95
2 -> 3 12 95
3 -> 1 9 95
3 -> 2 12 95
3 -> 3 3 38

Einzel-Wahrscheinlichkeiten: 1: 3 10 ; 2: 2 5 ; 3: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 12 95 )
'2'-'1' (P= 12 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 95 + 12 95 = 24 95


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 7 Schüler mit NWT-Profil, 8 Schüler mit sprachlichem Profil, 5 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 7 24 ; "nicht NWT": 17 24 ;

EreignisP
NWT -> NWT 7 92
NWT -> nicht NWT 119 552
nicht NWT -> NWT 119 552
nicht NWT -> nicht NWT 34 69

Einzel-Wahrscheinlichkeiten: NWT: 7 24 ; nicht NWT: 17 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 119 552 )
'nicht NWT'-'NWT' (P= 119 552 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

119 552 + 119 552 = 119 276


Kombinatorik (ohne Binom.)

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 3 Hosen entscheiden. Für die Füße stehen ihr 7 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 3 = 9 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 7 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 3 ⋅ 7 = 63 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Es findet ein Staffellauf im Biathlon der Herren statt. Der Trainer muss 3 Starter und auch die Reihenfolge der Starter nennen. In seinem Team sind 6 geeignete Kandidaten.Wie viele Startmöglichkeiten gibt es?

Lösung einblenden

Für die erste Stelle ist jede(r) Kandidat möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende Kandidat nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 6 ⋅ 5 ⋅ 4 = 120 Möglichkeiten.