Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: p=
grün: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p=
gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p=
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'rot')=1- =
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: rot: ; nicht rot: ;
Die relevanten Pfade sind:- 'rot'-'nicht rot' (P=)
- 'nicht rot'-'rot' (P=)
- 'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:- '3'-'4' (P=)
- '4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 8 rote und 4 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:
'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften höchstens 2 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'
Einzel-Wahrscheinlichkeiten :"deutsch": ; "nicht deutsch": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal deutsch' alle Möglichkeiten enthalten, außer eben 3 mal 'deutsch'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal 'deutsch')=1- =
| Ereignis | P |
|---|---|
| deutsch -> deutsch -> deutsch | |
| deutsch -> deutsch -> nicht deutsch | |
| deutsch -> nicht deutsch -> deutsch | |
| deutsch -> nicht deutsch -> nicht deutsch | |
| nicht deutsch -> deutsch -> deutsch | |
| nicht deutsch -> deutsch -> nicht deutsch | |
| nicht deutsch -> nicht deutsch -> deutsch | |
| nicht deutsch -> nicht deutsch -> nicht deutsch |
Einzel-Wahrscheinlichkeiten: deutsch: ; nicht deutsch: ;
Die relevanten Pfade sind:
'deutsch'-'deutsch'-'nicht deutsch' (P=)
'deutsch'-'nicht deutsch'-'deutsch' (P=)
'nicht deutsch'-'deutsch'-'deutsch' (P=)
'deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'
Einzel-Wahrscheinlichkeiten :"15": ; "nicht 15": ;
| Ereignis | P |
|---|---|
| 15 -> 15 | |
| 15 -> nicht 15 | |
| nicht 15 -> 15 | |
| nicht 15 -> nicht 15 |
Einzel-Wahrscheinlichkeiten: 15: ; nicht 15: ;
Die relevanten Pfade sind:
'15'-'15' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 6 Karten der Farbe Kreuz, 8 der Farbe Pik, 10 der Farbe Herz und 6 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Kreuz"?
Da ja ausschließlich nach 'Kreuz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Kreuz' und 'nicht Kreuz'
Einzel-Wahrscheinlichkeiten :"Kreuz": ; "nicht Kreuz": ;
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> nicht Kreuz | |
| nicht Kreuz -> Kreuz | |
| nicht Kreuz -> nicht Kreuz |
Einzel-Wahrscheinlichkeiten: Kreuz: ; nicht Kreuz: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Kombinatorik (ohne Binom.)
Beispiel:
In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 21 Schüler, in der 8b 21 Schüler und in der in der 8c 30 Schüler hat.
Für die Kategorie '8a' gibt es 21 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 21 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 21 ⋅ 21 = 441 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 30 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 21 ⋅ 21 ⋅ 30 = 13230 Möglichkeiten ergeben.
Kombinatorik
Beispiel:
Eine Mathelehrerin verlost unter den 10 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 10 ⋅ 9 ⋅ 8 ⋅ 7 = 5040 Möglichkeiten, die 10 Möglichkeiten (SchülerIn) auf die 4 "Ziehungen" (Knobelbücher) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.
Wir müssen deswegen die 5040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 210 Möglichkeiten für 4er-Gruppen, die aus 10 Elementen (SchülerIn) gebildet werden.
