Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: Man erkennt einen Halbkreis => p= 1 2

grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p= 3 8

gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 3 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'6er'-'6er' (P= 1 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 216 = 1 216


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "höchstens 1 mal D"?

Lösung einblenden

Da ja ausschließlich nach 'D' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'D' und 'nicht D'

Einzel-Wahrscheinlichkeiten :"D": 1 8 ; "nicht D": 7 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal D' alle Möglichkeiten enthalten, außer eben 2 mal 'D'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'D')=1- 1 64 = 63 64

EreignisP
D -> D 1 64
D -> nicht D 7 64
nicht D -> D 7 64
nicht D -> nicht D 49 64

Einzel-Wahrscheinlichkeiten: D: 1 8 ; nicht D: 7 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'D'-'nicht D' (P= 7 64 )
  • 'nicht D'-'D' (P= 7 64 )
  • 'nicht D'-'nicht D' (P= 49 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 64 + 7 64 + 49 64 = 63 64


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote, 10 blaue , 4 gelbe und 6 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 2 15 ; "nicht gelb": 13 15 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal gelb' alle Möglichkeiten enthalten, außer eben kein 'gelb' bzw. 0 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'gelb')=1- 65 87 = 22 87

EreignisP
gelb -> gelb 2 145
gelb -> nicht gelb 52 435
nicht gelb -> gelb 52 435
nicht gelb -> nicht gelb 65 87

Einzel-Wahrscheinlichkeiten: gelb: 2 15 ; nicht gelb: 13 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'gelb'-'nicht gelb' (P= 52 435 )
'nicht gelb'-'gelb' (P= 52 435 )
'gelb'-'gelb' (P= 2 145 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

52 435 + 52 435 + 2 145 = 22 87


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 1 mal König"?

Lösung einblenden

Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'

Einzel-Wahrscheinlichkeiten :"König": 1 4 ; "nicht König": 3 4 ;

EreignisP
König -> König 1 28
König -> nicht König 3 14
nicht König -> König 3 14
nicht König -> nicht König 15 28

Einzel-Wahrscheinlichkeiten: König: 1 4 ; nicht König: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'König'-'nicht König' (P= 3 14 )
'nicht König'-'König' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 14 + 3 14 = 3 7


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 2 rote und 8 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 10 1 9 8 8
= 1 5 1 9 4 4
= 1 45

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 5 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 1 4 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'4' (P= 1 16 )
  • '4'-'1' (P= 1 16 )
  • '2'-'3' (P= 1 32 )
  • '3'-'2' (P= 1 32 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 + 1 16 + 1 32 + 1 32 = 3 16


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 6 vom Typ rot und 4 vom Typ blau. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 1 3
rot -> blau 4 15
blau -> rot 4 15
blau -> blau 2 15

Einzel-Wahrscheinlichkeiten: rot: 3 5 ; blau: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 1 3 )
'blau'-'blau' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 3 + 2 15 = 7 15


Kombinatorik (ohne Binom.)

Beispiel:

Eine 4-stellige Zahl soll gewürfelt werden. Dabei wird einfach 4 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden

Lösung einblenden

Bei jedem der 4 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 = 64 = 1296 Möglichkeiten.

Kombinatorik

Beispiel:

Eine 3-stellige Zahl soll gewürfelt werden. Dabei wird einfach 3 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden.

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.