Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 8 Asse, 7 Könige, 2 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 8 + 7 + 2 + 3=20

Hieraus ergibt sich für ...

Ass: p= 8 20 = 2 5

König: p= 7 20

Dame: p= 2 20 = 1 10

Bube: p= 3 20

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'keine_6'-'keine_6' (P= 25 216 )
  • 'keine_6'-'6er'-'keine_6' (P= 25 216 )
  • 'keine_6'-'keine_6'-'6er' (P= 25 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 216 + 25 216 + 25 216 = 25 72


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 7 vom Typ rot, 7 vom Typ blau und 6 vom Typ gelb. Es wird 2 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 49 400
rot -> blau 49 400
rot -> gelb 21 200
blau -> rot 49 400
blau -> blau 49 400
blau -> gelb 21 200
gelb -> rot 21 200
gelb -> blau 21 200
gelb -> gelb 9 100

Einzel-Wahrscheinlichkeiten: rot: 7 20 ; blau: 7 20 ; gelb: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 49 400 )
  • 'blau'-'blau' (P= 49 400 )
  • 'gelb'-'gelb' (P= 9 100 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

49 400 + 49 400 + 9 100 = 67 200


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 3 Schüler mit NWT-Profil, 10 Schüler mit sprachlichem Profil, 8 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 2 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 8 ; "nicht NWT": 7 8 ;

EreignisP
NWT -> NWT 1 92
NWT -> nicht NWT 21 184
nicht NWT -> NWT 21 184
nicht NWT -> nicht NWT 35 46

Einzel-Wahrscheinlichkeiten: NWT: 1 8 ; nicht NWT: 7 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'NWT' (P= 1 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 92 = 1 92


Ziehen ohne Zurücklegen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 14 ist?

Lösung einblenden

Da ja ausschließlich nach '7' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '7' und 'nicht 7'

Einzel-Wahrscheinlichkeiten :"7": 1 3 ; "nicht 7": 2 3 ;

EreignisP
7 -> 7 1 11
7 -> nicht 7 8 33
nicht 7 -> 7 8 33
nicht 7 -> nicht 7 14 33

Einzel-Wahrscheinlichkeiten: 7: 1 3 ; nicht 7: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'7' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 11 = 1 11


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 29 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 45 136
13 -> 14 25 136
13 -> 15 5 68
14 -> 13 25 136
14 -> 14 5 68
14 -> 15 5 136
15 -> 13 5 68
15 -> 14 5 136
15 -> 15 1 136

Einzel-Wahrscheinlichkeiten: 13: 10 17 ; 14: 5 17 ; 15: 2 17 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'14'-'15' (P= 5 136 )
'15'-'14' (P= 5 136 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 136 + 5 136 = 5 68


nur Summen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 4 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 7
1 -> 2 4 35
1 -> 3 1 7
2 -> 1 4 35
2 -> 2 2 35
2 -> 3 2 21
3 -> 1 1 7
3 -> 2 2 21
3 -> 3 2 21

Einzel-Wahrscheinlichkeiten: 1: 2 5 ; 2: 4 15 ; 3: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 1 7 )
'3'-'1' (P= 1 7 )
'2'-'2' (P= 2 35 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 7 + 1 7 + 2 35 = 12 35


Kombinatorik (ohne Binom.)

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 24 Schüler, in der 8b 21 Schüler und in der in der 8c 30 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 24 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 21 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 24 ⋅ 21 = 504 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 30 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 24 ⋅ 21 ⋅ 30 = 15120 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 21 Schüler, in der 8b 24 Schüler und in der in der 8c 21 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 21 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 24 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 21 ⋅ 24 = 504 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 21 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 21 ⋅ 24 ⋅ 21 = 10584 Möglichkeiten ergeben.