Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 2 Schülerinnen und Schüler den katholischen Religionsunterricht, 5 den evangelischen, und 3 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 2 + 5 + 3=10

Hieraus ergibt sich für ...

rk: p= 2 10 = 1 5

ev: p= 5 10 = 1 2

Eth: p= 3 10

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht prim'-'nicht prim'-'nicht prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 = 1 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden
EreignisP
Teiler -> Teiler 4 9
Teiler -> kein Teiler 2 9
kein Teiler -> Teiler 2 9
kein Teiler -> kein Teiler 1 9

Einzel-Wahrscheinlichkeiten: Teiler: 2 3 ; kein Teiler: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'Teiler' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 9 = 4 9


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 3 Schüler mit NWT-Profil, 6 Schüler mit sprachlichem Profil, 8 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 2 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 3 20 ; "nicht NWT": 17 20 ;

EreignisP
NWT -> NWT 3 190
NWT -> nicht NWT 51 380
nicht NWT -> NWT 51 380
nicht NWT -> nicht NWT 68 95

Einzel-Wahrscheinlichkeiten: NWT: 3 20 ; nicht NWT: 17 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'NWT' (P= 3 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 190 = 3 190


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 8 Karten der Farbe Kreuz, 8 der Farbe Pik, 6 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Karo"?

Lösung einblenden

Da ja ausschließlich nach 'Karo' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Karo' und 'nicht Karo'

Einzel-Wahrscheinlichkeiten :"Karo": 3 25 ; "nicht Karo": 22 25 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Karo' alle Möglichkeiten enthalten, außer eben kein 'Karo' bzw. 0 mal 'Karo'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Karo')=1- 77 100 = 23 100

EreignisP
Karo -> Karo 1 100
Karo -> nicht Karo 11 100
nicht Karo -> Karo 11 100
nicht Karo -> nicht Karo 77 100

Einzel-Wahrscheinlichkeiten: Karo: 3 25 ; nicht Karo: 22 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Karo'-'nicht Karo' (P= 11 100 )
'nicht Karo'-'Karo' (P= 11 100 )
'Karo'-'Karo' (P= 1 100 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 100 + 11 100 + 1 100 = 23 100


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 11 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 5. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 15 3 14 2 13 1 12 11 11
= 1 5 1 7 1 13 1 3 11 11
= 1 1365

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 25 64
1 -> 2 5 64
1 -> 3 5 64
1 -> 4 5 64
2 -> 1 5 64
2 -> 2 1 64
2 -> 3 1 64
2 -> 4 1 64
3 -> 1 5 64
3 -> 2 1 64
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 5 64
4 -> 2 1 64
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 5 8 ; 2: 1 8 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 5 64 )
  • '2'-'1' (P= 5 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 64 + 5 64 = 5 32


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 5 Kugeln, die mit einer 1 beschriftet sind, 6 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 9
1 -> 2 2 15
1 -> 3 4 45
2 -> 1 2 15
2 -> 2 4 25
2 -> 3 8 75
3 -> 1 4 45
3 -> 2 8 75
3 -> 3 16 225

Einzel-Wahrscheinlichkeiten: 1: 1 3 ; 2: 2 5 ; 3: 4 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 2 15 )
  • '2'-'1' (P= 2 15 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 + 2 15 = 4 15


Kombinatorik (ohne Binom.)

Beispiel:

Eine bestimmte Variable soll im Computer mit 7 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 7 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 7 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 27 = 128 Möglichkeiten.

Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 5 Ringe mit jeweils 6 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 5 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 ⋅ 6 = 65 = 7776 Möglichkeiten.