Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: p=
grün: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p=
gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p=
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 3 rote, 3 gelbe, 8 blaue und 6 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'rot')=1- =
Ereignis | P |
---|---|
rot -> rot | |
rot -> nicht rot | |
nicht rot -> rot | |
nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: rot: ; nicht rot: ;
Die relevanten Pfade sind:- 'rot'-'nicht rot' (P=)
- 'nicht rot'-'rot' (P=)
- 'nicht rot'-'nicht rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Ereignis | P |
---|---|
rot -> rot | |
rot -> nicht rot | |
nicht rot -> rot | |
nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: rot: ; nicht rot: ;
Die relevanten Pfade sind:- 'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Dame"?
Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'
Einzel-Wahrscheinlichkeiten :"Dame": ; "nicht Dame": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Dame' alle Möglichkeiten enthalten, außer eben 2 mal 'Dame'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'Dame')=1- =
Ereignis | P |
---|---|
Dame -> Dame | |
Dame -> nicht Dame | |
nicht Dame -> Dame | |
nicht Dame -> nicht Dame |
Einzel-Wahrscheinlichkeiten: Dame: ; nicht Dame: ;
Die relevanten Pfade sind:
'Dame'-'nicht Dame' (P=)
'nicht Dame'-'Dame' (P=)
'nicht Dame'-'nicht Dame' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 1 mal Dame"?
Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'
Einzel-Wahrscheinlichkeiten :"Dame": ; "nicht Dame": ;
Ereignis | P |
---|---|
Dame -> Dame | |
Dame -> nicht Dame | |
nicht Dame -> Dame | |
nicht Dame -> nicht Dame |
Einzel-Wahrscheinlichkeiten: Dame: ; nicht Dame: ;
Die relevanten Pfade sind:
'Dame'-'nicht Dame' (P=)
'nicht Dame'-'Dame' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Ereignis | P |
---|---|
A -> A | |
A -> B | |
A -> C | |
A -> D | |
B -> A | |
B -> B | |
B -> C | |
B -> D | |
C -> A | |
C -> B | |
C -> C | |
C -> D | |
D -> A | |
D -> B | |
D -> C | |
D -> D |
Einzel-Wahrscheinlichkeiten: A: ; B: ; C: ; D: ;
Die relevanten Pfade sind:- 'A'-'C' (P=)
- 'C'-'A' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Kombinatorik (ohne Binom.)
Beispiel:
Eine Mathelehrerin war bei 4 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?
Für die erste Stelle ist jede(r) möglich. Es gibt also 4 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten.
Kombinatorik
Beispiel:
Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 7 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 7 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 7 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.
Für die Kategorie 'Vollmilch' gibt es 7 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 7 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 7 ⋅ 7 = 49 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 7 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 7 ⋅ 7 ⋅ 7 = 343 Möglichkeiten ergeben.