Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 9 64
rot -> blau 3 32
rot -> gelb 3 32
rot -> schwarz 3 64
blau -> rot 3 32
blau -> blau 1 16
blau -> gelb 1 16
blau -> schwarz 1 32
gelb -> rot 3 32
gelb -> blau 1 16
gelb -> gelb 1 16
gelb -> schwarz 1 32
schwarz -> rot 3 64
schwarz -> blau 1 32
schwarz -> gelb 1 32
schwarz -> schwarz 1 64

Einzel-Wahrscheinlichkeiten: rot: 3 8 ; blau: 1 4 ; gelb: 1 4 ; schwarz: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 3 32 )
  • 'blau'-'rot' (P= 3 32 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 32 + 3 32 = 3 16


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'keine_6'-'keine_6' (P= 25 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 36 = 25 36


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 7 vom Typ Kreuz, 8 vom Typ Herz, 7 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 7 100
Kreuz -> Herz 7 75
Kreuz -> Pik 49 600
Kreuz -> Karo 7 200
Herz -> Kreuz 7 75
Herz -> Herz 7 75
Herz -> Pik 7 75
Herz -> Karo 1 25
Pik -> Kreuz 49 600
Pik -> Herz 7 75
Pik -> Pik 7 100
Pik -> Karo 7 200
Karo -> Kreuz 7 200
Karo -> Herz 1 25
Karo -> Pik 7 200
Karo -> Karo 1 100

Einzel-Wahrscheinlichkeiten: Kreuz: 7 25 ; Herz: 8 25 ; Pik: 7 25 ; Karo: 3 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 7 100 )
'Herz'-'Herz' (P= 7 75 )
'Pik'-'Pik' (P= 7 100 )
'Karo'-'Karo' (P= 1 100 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 100 + 7 75 + 7 100 + 1 100 = 73 300


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 4 vom Typ Kreuz, 9 vom Typ Herz, 4 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 95
Kreuz -> Herz 9 95
Kreuz -> Pik 4 95
Kreuz -> Karo 3 95
Herz -> Kreuz 9 95
Herz -> Herz 18 95
Herz -> Pik 9 95
Herz -> Karo 27 380
Pik -> Kreuz 4 95
Pik -> Herz 9 95
Pik -> Pik 3 95
Pik -> Karo 3 95
Karo -> Kreuz 3 95
Karo -> Herz 27 380
Karo -> Pik 3 95
Karo -> Karo 3 190

Einzel-Wahrscheinlichkeiten: Kreuz: 1 5 ; Herz: 9 20 ; Pik: 1 5 ; Karo: 3 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 95 )
'Herz'-'Herz' (P= 18 95 )
'Pik'-'Pik' (P= 3 95 )
'Karo'-'Karo' (P= 3 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 95 + 18 95 + 3 95 + 3 190 = 51 190


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 24 26
= 3 9 8 26
= 4 39

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 16
1 -> 2 1 16
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 16
2 -> 2 1 16
2 -> 3 1 16
2 -> 4 1 16
3 -> 1 1 16
3 -> 2 1 16
3 -> 3 1 16
3 -> 4 1 16
4 -> 1 1 16
4 -> 2 1 16
4 -> 3 1 16
4 -> 4 1 16

Einzel-Wahrscheinlichkeiten: 1: 1 4 ; 2: 1 4 ; 3: 1 4 ; 4: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 16 )
  • '3'-'1' (P= 1 16 )
  • '2'-'2' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 + 1 16 + 1 16 = 3 16


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 11 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 15 3 14 11 13
= 2 5 1 7 11 13
= 22 455

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Kombinatorik (ohne Binom.)

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 21 Schüler, in der 8b 24 Schüler und in der in der 8c 24 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 21 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 24 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 21 ⋅ 24 = 504 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 24 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 21 ⋅ 24 ⋅ 24 = 12096 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Eine bestimmte Variable soll im Computer mit 7 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 7 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 7 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 27 = 128 Möglichkeiten.