Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 2 Asse, 8 Könige, 9 Damen, und 5 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 2 + 8 + 9 + 5=24

Hieraus ergibt sich für ...

Ass: p= 2 24 = 1 12

König: p= 8 24 = 1 3

Dame: p= 9 24 = 3 8

Bube: p= 5 24

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote, 9 gelbe, 9 blaue und 3 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 3 8 ; "nicht blau": 5 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'blau')=1- 25 64 = 39 64

EreignisP
blau -> blau 9 64
blau -> nicht blau 15 64
nicht blau -> blau 15 64
nicht blau -> nicht blau 25 64

Einzel-Wahrscheinlichkeiten: blau: 3 8 ; nicht blau: 5 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'nicht blau' (P= 15 64 )
  • 'nicht blau'-'blau' (P= 15 64 )
  • 'blau'-'blau' (P= 9 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 64 + 15 64 + 9 64 = 39 64


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 6er' alle Möglichkeiten enthalten, außer eben kein '6er' bzw. 0 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal '6er')=1- 125 216 = 91 216

EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> nicht 6er 5 216
6er -> nicht 6er -> 6er 5 216
6er -> nicht 6er -> nicht 6er 25 216
nicht 6er -> 6er -> 6er 5 216
nicht 6er -> 6er -> nicht 6er 25 216
nicht 6er -> nicht 6er -> 6er 25 216
nicht 6er -> nicht 6er -> nicht 6er 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; nicht 6er: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'nicht 6er'-'nicht 6er' (P= 25 216 )
  • 'nicht 6er'-'6er'-'nicht 6er' (P= 25 216 )
  • 'nicht 6er'-'nicht 6er'-'6er' (P= 25 216 )
  • '6er'-'6er'-'nicht 6er' (P= 5 216 )
  • '6er'-'nicht 6er'-'6er' (P= 5 216 )
  • 'nicht 6er'-'6er'-'6er' (P= 5 216 )
  • '6er'-'6er'-'6er' (P= 1 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 216 + 25 216 + 25 216 + 5 216 + 5 216 + 5 216 + 1 216 = 91 216


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 4 Schüler mit NWT-Profil, 7 Schüler mit sprachlichem Profil, 8 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass mindestens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 6 ; "nicht NWT": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal NWT' alle Möglichkeiten enthalten, außer eben kein 'NWT' bzw. 0 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'NWT')=1- 95 138 = 43 138

EreignisP
NWT -> NWT 1 46
NWT -> nicht NWT 10 69
nicht NWT -> NWT 10 69
nicht NWT -> nicht NWT 95 138

Einzel-Wahrscheinlichkeiten: NWT: 1 6 ; nicht NWT: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 10 69 )
'nicht NWT'-'NWT' (P= 10 69 )
'NWT'-'NWT' (P= 1 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

10 69 + 10 69 + 1 46 = 43 138


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 7
1 -> 2 1 7
1 -> 3 4 35
2 -> 1 1 7
2 -> 2 2 21
2 -> 3 2 21
3 -> 1 4 35
3 -> 2 2 21
3 -> 3 2 35

Einzel-Wahrscheinlichkeiten: 1: 2 5 ; 2: 1 3 ; 3: 4 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 4 35 )
'3'-'1' (P= 4 35 )
'2'-'2' (P= 2 21 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 35 + 4 35 + 2 21 = 34 105


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 11 2 10 1 9 8 8
= 1 11 1 5 1 3 4 4
= 1 165

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 11 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; 4: 1 6 ; 5: 1 6 ; 6: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '5'-'6' (P= 1 36 )
  • '6'-'5' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 = 1 18


nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 77
13 -> 14 50 231
13 -> 15 10 231
14 -> 13 50 231
14 -> 14 15 77
14 -> 15 10 231
15 -> 13 10 231
15 -> 14 10 231
15 -> 15 1 231

Einzel-Wahrscheinlichkeiten: 13: 5 11 ; 14: 5 11 ; 15: 1 11 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'14' (P= 50 231 )
'14'-'13' (P= 50 231 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

50 231 + 50 231 = 100 231


Kombinatorik (ohne Binom.)

Beispiel:

Eine 4-stellige Zahl soll gewürfelt werden. Dabei wird einfach 4 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden

Lösung einblenden

Bei jedem der 4 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 = 64 = 1296 Möglichkeiten.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 9 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 4 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 5 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 9 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 9 ⋅ 4 = 36 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 5 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 9 ⋅ 4 ⋅ 5 = 180 Möglichkeiten ergeben.