Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einem Kartenstapel sind 3 Asse, 7 Könige, 7 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 7 + 7 + 3=20
Hieraus ergibt sich für ...
Ass: p=
König: p=
Dame: p=
Bube: p=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Wappen"?
Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'
Einzel-Wahrscheinlichkeiten :"Wappen": ; "nicht Wappen": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Wappen' alle Möglichkeiten enthalten, außer eben kein 'Wappen' bzw. 0 mal 'Wappen'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Wappen')=1- =
| Ereignis | P |
|---|---|
| Wappen -> Wappen -> Wappen | |
| Wappen -> Wappen -> nicht Wappen | |
| Wappen -> nicht Wappen -> Wappen | |
| Wappen -> nicht Wappen -> nicht Wappen | |
| nicht Wappen -> Wappen -> Wappen | |
| nicht Wappen -> Wappen -> nicht Wappen | |
| nicht Wappen -> nicht Wappen -> Wappen | |
| nicht Wappen -> nicht Wappen -> nicht Wappen |
Einzel-Wahrscheinlichkeiten: Wappen: ; nicht Wappen: ;
Die relevanten Pfade sind:- 'Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'Wappen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?
| Ereignis | P |
|---|---|
| prim -> prim | |
| prim -> nicht prim | |
| nicht prim -> prim | |
| nicht prim -> nicht prim |
Einzel-Wahrscheinlichkeiten: prim: ; nicht prim: ;
Die relevanten Pfade sind:- 'prim'-'prim' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 5 vom Typ Kreuz, 8 vom Typ Herz, 8 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Herz: ; Pik: ; Karo: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 3 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 2 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 3 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau -> blau | |
| blau -> blau -> nicht blau | |
| blau -> nicht blau -> blau | |
| blau -> nicht blau -> nicht blau | |
| nicht blau -> blau -> blau | |
| nicht blau -> blau -> nicht blau | |
| nicht blau -> nicht blau -> blau | |
| nicht blau -> nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: blau: ; nicht blau: ;
Die relevanten Pfade sind:
'blau'-'blau'-'nicht blau' (P=)
'blau'-'nicht blau'-'blau' (P=)
'nicht blau'-'blau'-'blau' (P=)
'blau'-'nicht blau'-'nicht blau' (P=)
'nicht blau'-'blau'-'nicht blau' (P=)
'nicht blau'-'nicht blau'-'blau' (P=)
'nicht blau'-'nicht blau'-'nicht blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 28 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> 14 | |
| 13 -> 15 | |
| 14 -> 13 | |
| 14 -> 14 | |
| 14 -> 15 | |
| 15 -> 13 | |
| 15 -> 14 | |
| 15 -> 15 |
Einzel-Wahrscheinlichkeiten: 13: ; 14: ; 15: ;
Die relevanten Pfade sind:
'13'-'15' (P=)
'15'-'13' (P=)
'14'-'14' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 7 rote, 4 blaue , 9 gelbe und 4 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: rot: ; nicht rot: ;
Die relevanten Pfade sind:
'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Kombinatorik (ohne Binom.)
Beispiel:
Ein spezielles Zahlenschloss hat 4 Ringe mit jeweils 10 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?
Bei jedem der 4 'Zufallsversuche' gibt es 10 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 10-fach verzweigt.
Es entstehen so also 10 ⋅ 10 ⋅ 10 ⋅ 10 = 104 = 10000 Möglichkeiten.
Kombinatorik
Beispiel:
In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 27 Schüler, in der 8b 24 Schüler und in der in der 8c 24 Schüler hat.
Für die Kategorie '8a' gibt es 27 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 24 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 27 ⋅ 24 = 648 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 24 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 27 ⋅ 24 ⋅ 24 = 15552 Möglichkeiten ergeben.
