Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote, 3 gelbe, 10 blaue und 7 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 7 30 ; "nicht schwarz": 23 30 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'schwarz')=1- 529 900 = 371 900

EreignisP
schwarz -> schwarz 49 900
schwarz -> nicht schwarz 161 900
nicht schwarz -> schwarz 161 900
nicht schwarz -> nicht schwarz 529 900

Einzel-Wahrscheinlichkeiten: schwarz: 7 30 ; nicht schwarz: 23 30 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'nicht schwarz' (P= 161 900 )
  • 'nicht schwarz'-'schwarz' (P= 161 900 )
  • 'schwarz'-'schwarz' (P= 49 900 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

161 900 + 161 900 + 49 900 = 371 900


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'keine_6' (P= 5 36 )
  • 'keine_6'-'6er' (P= 5 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 = 5 18


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal Ass und 1 mal König"?

Lösung einblenden
EreignisP
Ass -> Ass 1 28
Ass -> König 1 14
Ass -> Dame 1 7
König -> Ass 1 14
König -> König 1 28
König -> Dame 1 7
Dame -> Ass 1 7
Dame -> König 1 7
Dame -> Dame 3 14

Einzel-Wahrscheinlichkeiten: Ass: 1 4 ; König: 1 4 ; Dame: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'König' (P= 1 14 )
'König'-'Ass' (P= 1 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 14 + 1 14 = 1 7


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 7 Kugeln mit einer Eins beschriftet, 3 Kugeln mit einer Zwei, 9 mit Drei und 5 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 4 ergeben?

Lösung einblenden
EreignisP
1 -> 1 7 92
1 -> 2 7 184
1 -> 3 21 184
1 -> 4 35 552
2 -> 1 7 184
2 -> 2 1 92
2 -> 3 9 184
2 -> 4 5 184
3 -> 1 21 184
3 -> 2 9 184
3 -> 3 3 23
3 -> 4 15 184
4 -> 1 35 552
4 -> 2 5 184
4 -> 3 15 184
4 -> 4 5 138

Einzel-Wahrscheinlichkeiten: 1: 7 24 ; 2: 1 8 ; 3: 3 8 ; 4: 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 21 184 )
'3'-'1' (P= 21 184 )
'2'-'2' (P= 1 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 184 + 21 184 + 1 92 = 11 46


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 11 9 10
= 1 11 9 5
= 9 55

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 58
13 -> 14 75 406
13 -> 15 15 203
14 -> 13 75 406
14 -> 14 45 406
14 -> 15 10 203
15 -> 13 15 203
15 -> 14 10 203
15 -> 15 3 203

Einzel-Wahrscheinlichkeiten: 13: 15 29 ; 14: 10 29 ; 15: 4 29 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'14' (P= 75 406 )
'14'-'13' (P= 75 406 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

75 406 + 75 406 = 75 203


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 4 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 1 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 1 3 ; "nicht Ass": 2 3 ;

EreignisP
Ass -> Ass 1 11
Ass -> nicht Ass 8 33
nicht Ass -> Ass 8 33
nicht Ass -> nicht Ass 14 33

Einzel-Wahrscheinlichkeiten: Ass: 1 3 ; nicht Ass: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'nicht Ass' (P= 8 33 )
'nicht Ass'-'Ass' (P= 8 33 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

8 33 + 8 33 = 16 33


Kombinatorik (ohne Binom.)

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 22 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 5 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 22 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 21 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 20 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 22 ⋅ 21 ⋅ 20 ⋅ 19 ⋅ 18 = 3160080 Möglichkeiten.

Kombinatorik

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 8 ⋅ 7 = 56 Möglichkeiten, die 8 Möglichkeiten (SchülerIn) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 2 ⋅ 1 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 56 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 56 2 = 28 Möglichkeiten für 2er-Gruppen, die aus 8 Elementen (SchülerIn) gebildet werden.