Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: Man erkennt einen Halbkreis => p= 1 2

grün: Man erkennt einen Viertelkreis => p= 1 4

gelb: Man erkennt einen Viertelkreis => p= 1 4

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "1 mal Zahl und 2 mal Wappen"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: Zahl: 1 2 ; Wappen: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Zahl'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 3 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 49 225
1 -> 2 7 75
1 -> 3 7 45
2 -> 1 7 75
2 -> 2 1 25
2 -> 3 1 15
3 -> 1 7 45
3 -> 2 1 15
3 -> 3 1 9

Einzel-Wahrscheinlichkeiten: 1: 7 15 ; 2: 1 5 ; 3: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 7 75 )
  • '2'-'1' (P= 7 75 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 75 + 7 75 = 14 75


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 9 Schüler mit NWT-Profil, 9 Schüler mit sprachlichem Profil, 4 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 9 25 ; "nicht NWT": 16 25 ;

EreignisP
NWT -> NWT 3 25
NWT -> nicht NWT 6 25
nicht NWT -> NWT 6 25
nicht NWT -> nicht NWT 2 5

Einzel-Wahrscheinlichkeiten: NWT: 9 25 ; nicht NWT: 16 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht NWT'-'nicht NWT' (P= 2 5 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 5 = 2 5


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 3 vom Typ rot, 5 vom Typ blau und 4 vom Typ gelb. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 1 22
rot -> blau 5 44
rot -> gelb 1 11
blau -> rot 5 44
blau -> blau 5 33
blau -> gelb 5 33
gelb -> rot 1 11
gelb -> blau 5 33
gelb -> gelb 1 11

Einzel-Wahrscheinlichkeiten: rot: 1 4 ; blau: 5 12 ; gelb: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 1 22 )
'blau'-'blau' (P= 5 33 )
'gelb'-'gelb' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 22 + 5 33 + 1 11 = 19 66


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 1 4 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 16 )
  • '3'-'1' (P= 1 16 )
  • '2'-'2' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 + 1 16 + 1 16 = 3 16


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 8 rote und 4 blaue Kugeln. Es wird 3 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 3 ; "nicht rot": 1 3 ;

EreignisP
rot -> rot -> rot 14 55
rot -> rot -> nicht rot 28 165
rot -> nicht rot -> rot 28 165
rot -> nicht rot -> nicht rot 4 55
nicht rot -> rot -> rot 28 165
nicht rot -> rot -> nicht rot 4 55
nicht rot -> nicht rot -> rot 4 55
nicht rot -> nicht rot -> nicht rot 1 55

Einzel-Wahrscheinlichkeiten: rot: 2 3 ; nicht rot: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot'-'nicht rot' (P= 4 55 )
'nicht rot'-'rot'-'nicht rot' (P= 4 55 )
'nicht rot'-'nicht rot'-'rot' (P= 4 55 )
'nicht rot'-'nicht rot'-'nicht rot' (P= 1 55 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 55 + 4 55 + 4 55 + 1 55 = 13 55


Kombinatorik (ohne Binom.)

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 24 Schüler, in der 8b 30 Schüler und in der in der 8c 21 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 24 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 30 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 24 ⋅ 30 = 720 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 21 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 24 ⋅ 30 ⋅ 21 = 15120 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 6 ⋅ 5 = 30 Möglichkeiten, die 6 Möglichkeiten (SchülerIn) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 2 ⋅ 1 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 30 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 30 2 = 15 Möglichkeiten für 2er-Gruppen, die aus 6 Elementen (SchülerIn) gebildet werden.