Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 10 blaue, 2 grüne, 10 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 10 + 2 + 10 + 3=25

Hieraus ergibt sich für ...

blau: p= 10 25 = 2 5

grün: p= 2 25

gelb: p= 10 25 = 2 5

rot: p= 3 25

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> nicht 6er 5 216
6er -> nicht 6er -> 6er 5 216
6er -> nicht 6er -> nicht 6er 25 216
nicht 6er -> 6er -> 6er 5 216
nicht 6er -> 6er -> nicht 6er 25 216
nicht 6er -> nicht 6er -> 6er 25 216
nicht 6er -> nicht 6er -> nicht 6er 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; nicht 6er: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'nicht 6er'-'nicht 6er' (P= 25 216 )
  • 'nicht 6er'-'6er'-'nicht 6er' (P= 25 216 )
  • 'nicht 6er'-'nicht 6er'-'6er' (P= 25 216 )
  • 'nicht 6er'-'nicht 6er'-'nicht 6er' (P= 125 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 216 + 25 216 + 25 216 + 125 216 = 25 27


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 rote, 8 gelbe, 2 blaue und 4 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 2 5 ; "nicht gelb": 3 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal gelb' alle Möglichkeiten enthalten, außer eben kein 'gelb' bzw. 0 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'gelb')=1- 9 25 = 16 25

EreignisP
gelb -> gelb 4 25
gelb -> nicht gelb 6 25
nicht gelb -> gelb 6 25
nicht gelb -> nicht gelb 9 25

Einzel-Wahrscheinlichkeiten: gelb: 2 5 ; nicht gelb: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'gelb'-'nicht gelb' (P= 6 25 )
  • 'nicht gelb'-'gelb' (P= 6 25 )
  • 'gelb'-'gelb' (P= 4 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

6 25 + 6 25 + 4 25 = 16 25


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 4 ; "nicht Dame": 3 4 ;

EreignisP
Dame -> Dame 1 28
Dame -> nicht Dame 3 14
nicht Dame -> Dame 3 14
nicht Dame -> nicht Dame 15 28

Einzel-Wahrscheinlichkeiten: Dame: 1 4 ; nicht Dame: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'Dame' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 28 = 1 28


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 2 Kugeln mit einer Eins beschriftet, 8 Kugeln mit einer Zwei, 5 mit Drei und 5 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 5 ergeben?

Lösung einblenden
EreignisP
1 -> 1 1 190
1 -> 2 4 95
1 -> 3 1 38
1 -> 4 1 38
2 -> 1 4 95
2 -> 2 14 95
2 -> 3 2 19
2 -> 4 2 19
3 -> 1 1 38
3 -> 2 2 19
3 -> 3 1 19
3 -> 4 5 76
4 -> 1 1 38
4 -> 2 2 19
4 -> 3 5 76
4 -> 4 1 19

Einzel-Wahrscheinlichkeiten: 1: 1 10 ; 2: 2 5 ; 3: 1 4 ; 4: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'4' (P= 1 38 )
'4'-'1' (P= 1 38 )
'2'-'3' (P= 2 19 )
'3'-'2' (P= 2 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 38 + 1 38 + 2 19 + 2 19 = 5 19


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 18 20
= 3 7 6 20
= 9 70

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 26 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '13' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13' und 'nicht 13'

Einzel-Wahrscheinlichkeiten :"13": 15 22 ; "nicht 13": 7 22 ;

EreignisP
13 -> 13 5 11
13 -> nicht 13 5 22
nicht 13 -> 13 5 22
nicht 13 -> nicht 13 1 11

Einzel-Wahrscheinlichkeiten: 13: 15 22 ; nicht 13: 7 22 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'13' (P= 5 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 11 = 5 11


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot -> rot 1 6
rot -> rot -> blau 1 6
rot -> blau -> rot 1 6
rot -> blau -> blau 1 10
blau -> rot -> rot 1 6
blau -> rot -> blau 1 10
blau -> blau -> rot 1 10
blau -> blau -> blau 1 30

Einzel-Wahrscheinlichkeiten: rot: 3 5 ; blau: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'blau' (P= 1 6 )
'rot'-'blau'-'rot' (P= 1 6 )
'blau'-'rot'-'rot' (P= 1 6 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 6 + 1 6 = 1 2


Kombinatorik (ohne Binom.)

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 30 Schüler, in der 8b 27 Schüler und in der in der 8c 30 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 30 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 27 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 30 ⋅ 27 = 810 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 30 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 30 ⋅ 27 ⋅ 30 = 24300 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Petra hat sich ein 5-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 5 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten.