Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 3 blaue, 5 grüne, 1 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 5 + 1 + 3=12
Hieraus ergibt sich für ...
blau: p= =
grün: p=
gelb: p=
rot: p= =
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:- 'rot'-'blau' (P=)
- 'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:- '2'-'4' (P=)
- '4'-'2' (P=)
- '3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 2 vom Typ Kreuz, 10 vom Typ Herz, 2 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Herz: ; Pik: ; Karo: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 0 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
| Ereignis | P |
|---|---|
| deutsch -> deutsch -> deutsch | |
| deutsch -> deutsch -> andere | |
| deutsch -> andere -> deutsch | |
| deutsch -> andere -> andere | |
| andere -> deutsch -> deutsch | |
| andere -> deutsch -> andere | |
| andere -> andere -> deutsch | |
| andere -> andere -> andere |
Einzel-Wahrscheinlichkeiten: deutsch: ; andere: ;
Die relevanten Pfade sind:
'andere'-'andere'-'andere' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> 14 | |
| 13 -> 15 | |
| 14 -> 13 | |
| 14 -> 14 | |
| 14 -> 15 | |
| 15 -> 13 | |
| 15 -> 14 | |
| 15 -> 15 |
Einzel-Wahrscheinlichkeiten: 13: ; 14: ; 15: ;
Die relevanten Pfade sind:
'13'-'14' (P=)
'14'-'13' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 4 Karten der Farbe Kreuz, 10 der Farbe Pik, 6 der Farbe Herz und 4 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Karo"?
Da ja ausschließlich nach 'Karo' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Karo' und 'nicht Karo'
Einzel-Wahrscheinlichkeiten :"Karo": ; "nicht Karo": ;
| Ereignis | P |
|---|---|
| Karo -> Karo | |
| Karo -> nicht Karo | |
| nicht Karo -> Karo | |
| nicht Karo -> nicht Karo |
Einzel-Wahrscheinlichkeiten: Karo: ; nicht Karo: ;
Die relevanten Pfade sind:
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Kombinatorik (ohne Binom.)
Beispiel:
Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.
Kombinatorik
Beispiel:
Ein spezielles Zahlenschloss hat 4 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?
Bei jedem der 4 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 4-fach verzweigt.
Es entstehen so also 4 ⋅ 4 ⋅ 4 ⋅ 4 = 44 = 256 Möglichkeiten.
