Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 9 blaue, 5 grüne, 7 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 5 + 7 + 3=24

Hieraus ergibt sich für ...

blau: p= 9 24 = 3 8

grün: p= 5 24

gelb: p= 7 24

rot: p= 3 24 = 1 8

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "1 mal blau und 1 mal gelb"?

Lösung einblenden
EreignisP
rot -> rot 9 64
rot -> blau 9 64
rot -> gelb 3 64
rot -> schwarz 3 64
blau -> rot 9 64
blau -> blau 9 64
blau -> gelb 3 64
blau -> schwarz 3 64
gelb -> rot 3 64
gelb -> blau 3 64
gelb -> gelb 1 64
gelb -> schwarz 1 64
schwarz -> rot 3 64
schwarz -> blau 3 64
schwarz -> gelb 1 64
schwarz -> schwarz 1 64

Einzel-Wahrscheinlichkeiten: rot: 3 8 ; blau: 3 8 ; gelb: 1 8 ; schwarz: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'gelb' (P= 3 64 )
  • 'gelb'-'blau' (P= 3 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 = 3 32


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 5 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; 4: 1 6 ; 5: 1 6 ; 6: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'4' (P= 1 36 )
  • '4'-'1' (P= 1 36 )
  • '2'-'3' (P= 1 36 )
  • '3'-'2' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 8 Mädchen und 4 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 1 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 2 3 ; "nicht Mädchen": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Mädchen' alle Möglichkeiten enthalten, außer eben kein 'Mädchen' bzw. 0 mal 'Mädchen'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Mädchen')=1- 1 55 = 54 55

EreignisP
Mädchen -> Mädchen -> Mädchen 14 55
Mädchen -> Mädchen -> nicht Mädchen 28 165
Mädchen -> nicht Mädchen -> Mädchen 28 165
Mädchen -> nicht Mädchen -> nicht Mädchen 4 55
nicht Mädchen -> Mädchen -> Mädchen 28 165
nicht Mädchen -> Mädchen -> nicht Mädchen 4 55
nicht Mädchen -> nicht Mädchen -> Mädchen 4 55
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 55

Einzel-Wahrscheinlichkeiten: Mädchen: 2 3 ; nicht Mädchen: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 4 55 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 4 55 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 4 55 )
'Mädchen'-'Mädchen'-'nicht Mädchen' (P= 28 165 )
'Mädchen'-'nicht Mädchen'-'Mädchen' (P= 28 165 )
'nicht Mädchen'-'Mädchen'-'Mädchen' (P= 28 165 )
'Mädchen'-'Mädchen'-'Mädchen' (P= 14 55 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 55 + 4 55 + 4 55 + 28 165 + 28 165 + 28 165 + 14 55 = 54 55


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 6 Mädchen und 4 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 0 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 6
Mädchen -> Mädchen -> Jungs 1 6
Mädchen -> Jungs -> Mädchen 1 6
Mädchen -> Jungs -> Jungs 1 10
Jungs -> Mädchen -> Mädchen 1 6
Jungs -> Mädchen -> Jungs 1 10
Jungs -> Jungs -> Mädchen 1 10
Jungs -> Jungs -> Jungs 1 30

Einzel-Wahrscheinlichkeiten: Mädchen: 3 5 ; Jungs: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Jungs'-'Jungs'-'Jungs' (P= 1 30 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 30 = 1 30


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 12 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 16 12 15
= 4 4 3 15
= 1 5

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 92
13 -> 14 25 138
13 -> 15 5 69
14 -> 13 25 138
14 -> 14 15 92
14 -> 15 5 69
15 -> 13 5 69
15 -> 14 5 69
15 -> 15 1 46

Einzel-Wahrscheinlichkeiten: 13: 5 12 ; 14: 5 12 ; 15: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'14' (P= 25 138 )
'14'-'13' (P= 25 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 138 + 25 138 = 25 69


mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 2 mal Wappen"?

Lösung einblenden

Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'

Einzel-Wahrscheinlichkeiten :"Wappen": 1 2 ; "nicht Wappen": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Wappen' alle Möglichkeiten enthalten, außer eben 3 mal 'Wappen'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'Wappen')=1- 1 8 = 7 8

EreignisP
Wappen -> Wappen -> Wappen 1 8
Wappen -> Wappen -> nicht Wappen 1 8
Wappen -> nicht Wappen -> Wappen 1 8
Wappen -> nicht Wappen -> nicht Wappen 1 8
nicht Wappen -> Wappen -> Wappen 1 8
nicht Wappen -> Wappen -> nicht Wappen 1 8
nicht Wappen -> nicht Wappen -> Wappen 1 8
nicht Wappen -> nicht Wappen -> nicht Wappen 1 8

Einzel-Wahrscheinlichkeiten: Wappen: 1 2 ; nicht Wappen: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Wappen'-'Wappen'-'nicht Wappen' (P= 1 8 )
  • 'Wappen'-'nicht Wappen'-'Wappen' (P= 1 8 )
  • 'nicht Wappen'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'nicht Wappen'-'nicht Wappen' (P= 1 8 )
  • 'nicht Wappen'-'Wappen'-'nicht Wappen' (P= 1 8 )
  • 'nicht Wappen'-'nicht Wappen'-'Wappen' (P= 1 8 )
  • 'nicht Wappen'-'nicht Wappen'-'nicht Wappen' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 = 7 8


Kombinatorik (ohne Binom.)

Beispiel:

Ein spezielles Zahlenschloss hat 5 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 5 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 4-fach verzweigt.

Es entstehen so also 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 = 45 = 1024 Möglichkeiten.

Kombinatorik

Beispiel:

Es findet ein Staffellauf im Biathlon der Herren statt. Der Trainer muss 3 Starter und auch die Reihenfolge der Starter nennen. In seinem Team sind 9 geeignete Kandidaten.Wie viele Startmöglichkeiten gibt es?

Lösung einblenden

Für die erste Stelle ist jede(r) Kandidat möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende Kandidat nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 7 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 9 ⋅ 8 ⋅ 7 = 504 Möglichkeiten.