Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 7 Schülerinnen und Schüler den katholischen Religionsunterricht, 2 den evangelischen, und 3 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 2 + 3=12

Hieraus ergibt sich für ...

rk: p= 7 12

ev: p= 2 12 = 1 6

Eth: p= 3 12 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 2 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '6er')=1- 1 36 = 35 36

EreignisP
6er -> 6er 1 36
6er -> nicht 6er 5 36
nicht 6er -> 6er 5 36
nicht 6er -> nicht 6er 25 36

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; nicht 6er: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'nicht 6er' (P= 5 36 )
  • 'nicht 6er'-'6er' (P= 5 36 )
  • 'nicht 6er'-'nicht 6er' (P= 25 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 25 36 = 35 36


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 2 Kugeln, die mit einer 1 beschriftet sind, 10 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 4 225
1 -> 2 4 45
1 -> 3 2 75
2 -> 1 4 45
2 -> 2 4 9
2 -> 3 2 15
3 -> 1 2 75
3 -> 2 2 15
3 -> 3 1 25

Einzel-Wahrscheinlichkeiten: 1: 2 15 ; 2: 2 3 ; 3: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 4 45 )
  • '2'-'1' (P= 4 45 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 45 + 4 45 = 8 45


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 8 rote, 8 blaue , 10 gelbe und 4 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 28 435
rot -> blau 32 435
rot -> gelb 8 87
rot -> schwarz 16 435
blau -> rot 32 435
blau -> blau 28 435
blau -> gelb 8 87
blau -> schwarz 16 435
gelb -> rot 8 87
gelb -> blau 8 87
gelb -> gelb 3 29
gelb -> schwarz 4 87
schwarz -> rot 16 435
schwarz -> blau 16 435
schwarz -> gelb 4 87
schwarz -> schwarz 2 145

Einzel-Wahrscheinlichkeiten: rot: 4 15 ; blau: 4 15 ; gelb: 1 3 ; schwarz: 2 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'blau' (P= 32 435 )
'blau'-'rot' (P= 32 435 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

32 435 + 32 435 = 64 435


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 9 38
1 -> 2 5 38
1 -> 3 5 38
2 -> 1 5 38
2 -> 2 1 19
2 -> 3 5 76
3 -> 1 5 38
3 -> 2 5 76
3 -> 3 1 19

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 1 4 ; 3: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 5 38 )
'2'-'1' (P= 5 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 38 + 5 38 = 5 19


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 3 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 5 3 4
= 1 5 3 2
= 3 10

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 26 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '13' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13' und 'nicht 13'

Einzel-Wahrscheinlichkeiten :"13": 5 9 ; "nicht 13": 4 9 ;

EreignisP
13 -> 13 35 117
13 -> nicht 13 10 39
nicht 13 -> 13 10 39
nicht 13 -> nicht 13 22 117

Einzel-Wahrscheinlichkeiten: 13: 5 9 ; nicht 13: 4 9 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'13' (P= 35 117 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

35 117 = 35 117


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 24 26
= 3 9 8 26
= 4 39

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Kombinatorik (ohne Binom.)

Beispiel:

Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 4-fach verzweigt.

Es entstehen so also 4 ⋅ 4 ⋅ 4 = 43 = 64 Möglichkeiten.

Kombinatorik

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 5 Schülerinnen. Diese möchte sie zufällig aus der 25-köpfigen Sportgruppe losen. Wie viele verschiedene 5er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 25 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 24 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 23 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 25 ⋅ 24 ⋅ 23 ⋅ 22 ⋅ 21 = 6375600 Möglichkeiten, die 25 Möglichkeiten (Schülerin) auf die 5 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.

Wir müssen deswegen die 6375600 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 6375600 120 = 53130 Möglichkeiten für 5er-Gruppen, die aus 25 Elementen (Schülerin) gebildet werden.