Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: Man erkennt einen Halbkreis => p= 1 2

grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p= 3 8

gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 1 4
rot -> blau 1 4
blau -> rot 1 4
blau -> blau 1 4

Einzel-Wahrscheinlichkeiten: rot: 1 2 ; blau: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 1 4 )
  • 'blau'-'rot' (P= 1 4 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 + 1 4 = 1 2


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 5 rote, 2 gelbe, 10 blaue und 3 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 3 20 ; "nicht schwarz": 17 20 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal schwarz' alle Möglichkeiten enthalten, außer eben 2 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'schwarz')=1- 9 400 = 391 400

EreignisP
schwarz -> schwarz 9 400
schwarz -> nicht schwarz 51 400
nicht schwarz -> schwarz 51 400
nicht schwarz -> nicht schwarz 289 400

Einzel-Wahrscheinlichkeiten: schwarz: 3 20 ; nicht schwarz: 17 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'nicht schwarz' (P= 51 400 )
  • 'nicht schwarz'-'schwarz' (P= 51 400 )
  • 'nicht schwarz'-'nicht schwarz' (P= 289 400 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

51 400 + 51 400 + 289 400 = 391 400


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 3 Schüler mit NWT-Profil, 5 Schüler mit sprachlichem Profil, 10 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass mindestens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 8 ; "nicht NWT": 7 8 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal NWT' alle Möglichkeiten enthalten, außer eben kein 'NWT' bzw. 0 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'NWT')=1- 35 46 = 11 46

EreignisP
NWT -> NWT 1 92
NWT -> nicht NWT 21 184
nicht NWT -> NWT 21 184
nicht NWT -> nicht NWT 35 46

Einzel-Wahrscheinlichkeiten: NWT: 1 8 ; nicht NWT: 7 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 21 184 )
'nicht NWT'-'NWT' (P= 21 184 )
'NWT'-'NWT' (P= 1 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 184 + 21 184 + 1 92 = 11 46


Ziehen ohne Zurücklegen

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 3 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; andere: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'deutsch' (P= 1 140 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 140 = 1 140


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 11 2 10 1 9 8 8
= 1 11 1 5 1 3 4 4
= 1 165

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 77
13 -> 14 50 231
13 -> 15 10 231
14 -> 13 50 231
14 -> 14 15 77
14 -> 15 10 231
15 -> 13 10 231
15 -> 14 10 231
15 -> 15 1 231

Einzel-Wahrscheinlichkeiten: 13: 5 11 ; 14: 5 11 ; 15: 1 11 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'14' (P= 50 231 )
'14'-'13' (P= 50 231 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

50 231 + 50 231 = 100 231


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften mindestens 2 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden

Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'

Einzel-Wahrscheinlichkeiten :"deutsch": 1 4 ; "nicht deutsch": 3 4 ;

EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> nicht deutsch 3 70
deutsch -> nicht deutsch -> deutsch 3 70
deutsch -> nicht deutsch -> nicht deutsch 11 70
nicht deutsch -> deutsch -> deutsch 3 70
nicht deutsch -> deutsch -> nicht deutsch 11 70
nicht deutsch -> nicht deutsch -> deutsch 11 70
nicht deutsch -> nicht deutsch -> nicht deutsch 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; nicht deutsch: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'nicht deutsch' (P= 3 70 )
'deutsch'-'nicht deutsch'-'deutsch' (P= 3 70 )
'nicht deutsch'-'deutsch'-'deutsch' (P= 3 70 )
'deutsch'-'deutsch'-'deutsch' (P= 1 140 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 70 + 3 70 + 3 70 + 1 140 = 19 140


Kombinatorik (ohne Binom.)

Beispiel:

Eine bestimmte Variable soll im Computer mit 7 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 7 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 7 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 27 = 128 Möglichkeiten.

Kombinatorik

Beispiel:

Es findet ein Staffellauf im Biathlon der Herren statt. Der Trainer muss 4 Starter und auch die Reihenfolge der Starter nennen. In seinem Team sind 8 geeignete Kandidaten.Wie viele Startmöglichkeiten gibt es?

Lösung einblenden

Für die erste Stelle ist jede(r) Kandidat möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende Kandidat nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 8 ⋅ 7 ⋅ 6 ⋅ 5 = 1680 Möglichkeiten.