Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 6 blaue, 7 grüne, 1 gelbe und 6 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 6 + 7 + 1 + 6=20

Hieraus ergibt sich für ...

blau: p= 6 20 = 3 10

grün: p= 7 20

gelb: p= 1 20

rot: p= 6 20 = 3 10

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim 1 4
prim -> nicht prim 1 4
nicht prim -> prim 1 4
nicht prim -> nicht prim 1 4

Einzel-Wahrscheinlichkeiten: prim: 1 2 ; nicht prim: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'prim' (P= 1 4 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 4 = 1 4


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 18 37 ; "nicht schwarz": 19 37 ;

EreignisP
schwarz -> schwarz 324 1369
schwarz -> nicht schwarz 342 1369
nicht schwarz -> schwarz 342 1369
nicht schwarz -> nicht schwarz 361 1369

Einzel-Wahrscheinlichkeiten: schwarz: 18 37 ; nicht schwarz: 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'schwarz' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

324 1369 = 324 1369


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote und 5 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 3 7
rot -> blau 5 21
blau -> rot 5 21
blau -> blau 2 21

Einzel-Wahrscheinlichkeiten: rot: 2 3 ; blau: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'blau' (P= 5 21 )
'blau'-'rot' (P= 5 21 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 21 + 5 21 = 10 21


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 9 Kugeln mit einer Eins beschriftet, 3 Kugeln mit einer Zwei, 2 mit Drei und 6 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?

Lösung einblenden
EreignisP
1 -> 1 18 95
1 -> 2 27 380
1 -> 3 9 190
1 -> 4 27 190
2 -> 1 27 380
2 -> 2 3 190
2 -> 3 3 190
2 -> 4 9 190
3 -> 1 9 190
3 -> 2 3 190
3 -> 3 1 190
3 -> 4 3 95
4 -> 1 27 190
4 -> 2 9 190
4 -> 3 3 95
4 -> 4 3 38

Einzel-Wahrscheinlichkeiten: 1: 9 20 ; 2: 3 20 ; 3: 1 10 ; 4: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 3 95 )
'4'-'3' (P= 3 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 95 + 3 95 = 6 95


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 5 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 8 2 7 5 6
= 1 4 1 7 5 2
= 5 56

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?

Lösung einblenden

Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'

Einzel-Wahrscheinlichkeiten :"9": 1 4 ; "nicht 9": 3 4 ;

EreignisP
9 -> 9 1 28
9 -> nicht 9 3 14
nicht 9 -> 9 3 14
nicht 9 -> nicht 9 15 28

Einzel-Wahrscheinlichkeiten: 9: 1 4 ; nicht 9: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'9'-'9' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 28 = 1 28


nur Summen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 4 kugel mit einer 2 und 7 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 7 20 ; "nicht 3": 13 20 ;

EreignisP
3 -> 3 21 190
3 -> nicht 3 91 380
nicht 3 -> 3 91 380
nicht 3 -> nicht 3 39 95

Einzel-Wahrscheinlichkeiten: 3: 7 20 ; nicht 3: 13 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'3' (P= 21 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

21 190 = 21 190


Kombinatorik (ohne Binom.)

Beispiel:

Eine 3-stellige Zahl soll gewürfelt werden. Dabei wird einfach 3 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.

Kombinatorik

Beispiel:

Es findet ein Staffellauf im Biathlon der Herren statt. Der Trainer muss 4 Starter und auch die Reihenfolge der Starter nennen. In seinem Team sind 5 geeignete Kandidaten.Wie viele Startmöglichkeiten gibt es?

Lösung einblenden

Für die erste Stelle ist jede(r) Kandidat möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende Kandidat nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 5 ⋅ 4 ⋅ 3 ⋅ 2 = 120 Möglichkeiten.