Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 1 Asse, 4 Könige, 6 Damen, und 4 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 4 + 6 + 4=15

Hieraus ergibt sich für ...

Ass: p= 1 15

König: p= 4 15

Dame: p= 6 15 = 2 5

Bube: p= 4 15

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 2 mal Wappen"?

Lösung einblenden

Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'

Einzel-Wahrscheinlichkeiten :"Wappen": 1 2 ; "nicht Wappen": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Wappen' alle Möglichkeiten enthalten, außer eben 3 mal 'Wappen'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'Wappen')=1- 1 8 = 7 8

EreignisP
Wappen -> Wappen -> Wappen 1 8
Wappen -> Wappen -> nicht Wappen 1 8
Wappen -> nicht Wappen -> Wappen 1 8
Wappen -> nicht Wappen -> nicht Wappen 1 8
nicht Wappen -> Wappen -> Wappen 1 8
nicht Wappen -> Wappen -> nicht Wappen 1 8
nicht Wappen -> nicht Wappen -> Wappen 1 8
nicht Wappen -> nicht Wappen -> nicht Wappen 1 8

Einzel-Wahrscheinlichkeiten: Wappen: 1 2 ; nicht Wappen: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Wappen'-'Wappen'-'nicht Wappen' (P= 1 8 )
  • 'Wappen'-'nicht Wappen'-'Wappen' (P= 1 8 )
  • 'nicht Wappen'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'nicht Wappen'-'nicht Wappen' (P= 1 8 )
  • 'nicht Wappen'-'Wappen'-'nicht Wappen' (P= 1 8 )
  • 'nicht Wappen'-'nicht Wappen'-'Wappen' (P= 1 8 )
  • 'nicht Wappen'-'nicht Wappen'-'nicht Wappen' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 = 7 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 4 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 5 ; "nicht 3": 4 5 ;

EreignisP
3 -> 3 1 25
3 -> nicht 3 4 25
nicht 3 -> 3 4 25
nicht 3 -> nicht 3 16 25

Einzel-Wahrscheinlichkeiten: 3: 1 5 ; nicht 3: 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'3' (P= 1 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 25 = 1 25


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 5 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 3 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 12
Mädchen -> Mädchen -> Jungs 5 36
Mädchen -> Jungs -> Mädchen 5 36
Mädchen -> Jungs -> Jungs 5 36
Jungs -> Mädchen -> Mädchen 5 36
Jungs -> Mädchen -> Jungs 5 36
Jungs -> Jungs -> Mädchen 5 36
Jungs -> Jungs -> Jungs 1 12

Einzel-Wahrscheinlichkeiten: Mädchen: 1 2 ; Jungs: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'Mädchen' (P= 1 12 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 12 = 1 12


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 2 ; "nicht Dame": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Dame' alle Möglichkeiten enthalten, außer eben 2 mal 'Dame'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Dame')=1- 3 14 = 11 14

EreignisP
Dame -> Dame 3 14
Dame -> nicht Dame 2 7
nicht Dame -> Dame 2 7
nicht Dame -> nicht Dame 3 14

Einzel-Wahrscheinlichkeiten: Dame: 1 2 ; nicht Dame: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'nicht Dame' (P= 2 7 )
'nicht Dame'-'Dame' (P= 2 7 )
'nicht Dame'-'nicht Dame' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 7 + 2 7 + 3 14 = 11 14


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 1 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 3 1 2 1
= 1 3 11
= 1 3

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 3 32
1 -> 3 3 32
1 -> 4 3 64
2 -> 1 3 32
2 -> 2 1 16
2 -> 3 1 16
2 -> 4 1 32
3 -> 1 3 32
3 -> 2 1 16
3 -> 3 1 16
3 -> 4 1 32
4 -> 1 3 64
4 -> 2 1 32
4 -> 3 1 32
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 3 8 ; 2: 1 4 ; 3: 1 4 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 3 32 )
  • '3'-'1' (P= 3 32 )
  • '2'-'2' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 32 + 3 32 + 1 16 = 1 4


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften genau 2 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden
EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> andere 3 70
deutsch -> andere -> deutsch 3 70
deutsch -> andere -> andere 11 70
andere -> deutsch -> deutsch 3 70
andere -> deutsch -> andere 11 70
andere -> andere -> deutsch 11 70
andere -> andere -> andere 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; andere: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'andere' (P= 3 70 )
'deutsch'-'andere'-'deutsch' (P= 3 70 )
'andere'-'deutsch'-'deutsch' (P= 3 70 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 70 + 3 70 + 3 70 = 9 70


Kombinatorik (ohne Binom.)

Beispiel:

Ein spezielles Zahlenschloss hat 5 Ringe mit jeweils 10 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 5 'Zufallsversuche' gibt es 10 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 10-fach verzweigt.

Es entstehen so also 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 = 105 = 100000 Möglichkeiten.

Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 4-fach verzweigt.

Es entstehen so also 4 ⋅ 4 ⋅ 4 = 43 = 64 Möglichkeiten.