Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6
Hieraus ergibt sich für ...
1: p=
2: p= =
3: p=
4: p=
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 4 rote, 9 gelbe, 3 blaue und 4 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?
Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'
Einzel-Wahrscheinlichkeiten :"gelb": ; "nicht gelb": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'gelb')=1- =
| Ereignis | P |
|---|---|
| gelb -> gelb | |
| gelb -> nicht gelb | |
| nicht gelb -> gelb | |
| nicht gelb -> nicht gelb |
Einzel-Wahrscheinlichkeiten: gelb: ; nicht gelb: ;
Die relevanten Pfade sind:- 'gelb'-'nicht gelb' (P=)
- 'nicht gelb'-'gelb' (P=)
- 'nicht gelb'-'nicht gelb' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Beim Würfelspiel Mäxle würfelt man mit zwei Würfeln. Die größere Augenzahl nimmt man als Zehner, die kleinere als Einer (z.B. 3 und 5 ergibt 53). Ein Pasch (gleiche Zahlen bei beiden Würfeln) zählt mehr als alle anderen Ergebnisse. Lediglich ein Mäxle (eine 1 und ein 2) schlägt auch einen Pasch. Die beiden schlechtesten Ergebnisse sind also 31 und 32. Wie groß ist die Wahrscheinlichkeit dafür?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> höher | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> höher | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> höher | |
| höher -> 1 | |
| höher -> 2 | |
| höher -> 3 | |
| höher -> höher |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; höher: ;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'3' (P=)
- '3'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 3 rote, 2 blaue , 5 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 2 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: blau: ; nicht blau: ;
Die relevanten Pfade sind:
'blau'-'nicht blau' (P=)
'nicht blau'-'blau' (P=)
'nicht blau'-'nicht blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
Auf einen Schüleraustausch bewerben sich 4 Mädchen und 6 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 0 an ein Mädchen gehen?
| Ereignis | P |
|---|---|
| Mädchen -> Mädchen -> Mädchen | |
| Mädchen -> Mädchen -> Jungs | |
| Mädchen -> Jungs -> Mädchen | |
| Mädchen -> Jungs -> Jungs | |
| Jungs -> Mädchen -> Mädchen | |
| Jungs -> Mädchen -> Jungs | |
| Jungs -> Jungs -> Mädchen | |
| Jungs -> Jungs -> Jungs |
Einzel-Wahrscheinlichkeiten: Mädchen: ; Jungs: ;
Die relevanten Pfade sind:
'Jungs'-'Jungs'-'Jungs' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 3 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
nur Summen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 8 vom Typ Herz, 5 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Herz: ; Pik: ; Karo: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Kombinatorik (ohne Binom.)
Beispiel:
Ein spezielles Zahlenschloss hat 4 Ringe mit jeweils 4 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?
Bei jedem der 4 'Zufallsversuche' gibt es 4 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 4-fach verzweigt.
Es entstehen so also 4 ⋅ 4 ⋅ 4 ⋅ 4 = 44 = 256 Möglichkeiten.
Kombinatorik
Beispiel:
In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 21 Schüler, in der 8b 24 Schüler und in der in der 8c 27 Schüler hat.
Für die Kategorie '8a' gibt es 21 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 24 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 21 ⋅ 24 = 504 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 27 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 21 ⋅ 24 ⋅ 27 = 13608 Möglichkeiten ergeben.
