Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 3 blaue, 4 grüne, 10 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 4 + 10 + 3=20

Hieraus ergibt sich für ...

blau: p= 3 20

grün: p= 4 20 = 1 5

gelb: p= 10 20 = 1 2

rot: p= 3 20

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'6er'-'keine_6' (P= 5 216 )
  • '6er'-'keine_6'-'6er' (P= 5 216 )
  • 'keine_6'-'6er'-'6er' (P= 5 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 216 + 5 216 + 5 216 = 5 72


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 9 rote, 10 gelbe, 10 blaue und 3 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 9 32 ; "nicht rot": 23 32 ;

EreignisP
rot -> rot 81 1024
rot -> nicht rot 207 1024
nicht rot -> rot 207 1024
nicht rot -> nicht rot 529 1024

Einzel-Wahrscheinlichkeiten: rot: 9 32 ; nicht rot: 23 32 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 81 1024 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

81 1024 = 81 1024


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 6 Schüler mit NWT-Profil, 6 Schüler mit sprachlichem Profil, 3 Schüler mit Musik-Profil und 5 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 2 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 3 10 ; "nicht NWT": 7 10 ;

EreignisP
NWT -> NWT 3 38
NWT -> nicht NWT 21 95
nicht NWT -> NWT 21 95
nicht NWT -> nicht NWT 91 190

Einzel-Wahrscheinlichkeiten: NWT: 3 10 ; nicht NWT: 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'NWT' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 38 = 3 38


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 7 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen höchstens 1 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 7 10 ; "nicht Mädchen": 3 10 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 7 24
Mädchen -> Mädchen -> nicht Mädchen 7 40
Mädchen -> nicht Mädchen -> Mädchen 7 40
Mädchen -> nicht Mädchen -> nicht Mädchen 7 120
nicht Mädchen -> Mädchen -> Mädchen 7 40
nicht Mädchen -> Mädchen -> nicht Mädchen 7 120
nicht Mädchen -> nicht Mädchen -> Mädchen 7 120
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 120

Einzel-Wahrscheinlichkeiten: Mädchen: 7 10 ; nicht Mädchen: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 7 120 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 7 120 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 7 120 )
'nicht Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 120 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 120 + 7 120 + 7 120 + 1 120 = 11 60


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 2 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 6 2 5
= 4 3 1 5
= 4 15

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 5 Kugeln, die mit einer 1 beschriftet sind, 6 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 2 21
1 -> 2 1 7
1 -> 3 2 21
2 -> 1 1 7
2 -> 2 1 7
2 -> 3 4 35
3 -> 1 2 21
3 -> 2 4 35
3 -> 3 2 35

Einzel-Wahrscheinlichkeiten: 1: 1 3 ; 2: 2 5 ; 3: 4 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 1 7 )
'2'-'1' (P= 1 7 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 7 + 1 7 = 2 7


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "höchstens 1 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 2 5 ; "nicht Dame": 3 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Dame' alle Möglichkeiten enthalten, außer eben 2 mal 'Dame'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Dame')=1- 2 15 = 13 15

EreignisP
Dame -> Dame 2 15
Dame -> nicht Dame 4 15
nicht Dame -> Dame 4 15
nicht Dame -> nicht Dame 1 3

Einzel-Wahrscheinlichkeiten: Dame: 2 5 ; nicht Dame: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'nicht Dame' (P= 4 15 )
'nicht Dame'-'Dame' (P= 4 15 )
'nicht Dame'-'nicht Dame' (P= 1 3 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 + 1 3 = 13 15


Kombinatorik (ohne Binom.)

Beispiel:

Eine 5-stellige Zahl soll gewürfelt werden. Dabei wird einfach 5 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden

Lösung einblenden

Bei jedem der 5 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 5 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 ⋅ 6 = 65 = 7776 Möglichkeiten.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 7 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 4 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 7 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 7 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 7 ⋅ 4 = 28 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 7 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 7 ⋅ 4 ⋅ 7 = 196 Möglichkeiten ergeben.