Aufgabenbeispiele von mit Winkeln begründen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Thaleskreis + gleichschenkl. Dreieck 3
Beispiel:
M liegt genau in der Mitte der Dreiecksseite BC. Bestimme die fehlende Winkelweite φ.
Da der Punkt D auf dem Thaleskreis liegt, steht die Strecke DC im rechten Winkel zur Strecke BA.
Es gilt somit:
δ +90° + 29° = 180°, oder δ = 90° - 29° =61°
(δ ist der gesamte Winkel in C).
Weil die Höhe auf A genau in der Mitte auf BC trifft, ist das große Dreieck ABC symmetrisch
und somit gleichschenklig. Das bedeutet, dass α und (ε+29)
gleich groß sein müssen.
Es gilt somit: α + (ε+29) + δ=180°,
also 2⋅α +δ=180°,
oder 2⋅α =180°-δ =180°-61°=119°
also α = 119° : 2 = 59.5°.
Am blauen Thaleskreis erkennt man, dass die Strecken MD und MB gleich lang sind, also ist MDB
ein gleichschenkliges Dreieck und somit sind α und γ gleich groß, also ist
auch γ=59.5°
Wegen des Dreieckswinkelsummensatzes gilt dann α + γ + β =
59.5° + 59.5° + β = 180°, also β = 180° - 119°
=61° .
Der Winkel φ liegt mit dem rechten Winkel im M und β=61° an einer Seite, also gilt
φ +90° + 61° = 180°, oder φ = 90° - 61°,somit
φ=29°.