Aufgabenbeispiele von mit Parameter
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
gegebener Funktionswert (BF)
Beispiel:
Für welches t liegt der Punkt A(|
Wir machen einfach eine Punktprobe mit A(|
Jetzt müssen wir also nur noch die Gleichung
=
= | | | ||
= | |: | ||
= |
Für t= liegt also der Punkt A auf dem Graph von f.
bestimmter x-Wert eines Extrempunkts
Beispiel:
Die Funktion ft mit besitzt genau einen Extrempunkt. Für welchen Wert von t ist der Extrempunkt auf der Geraden x= ?
Als erstes leitet man die Funktion ab.
=>
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
= | | | ||
= | |:() | ||
= |
Die Lösung x= ist nun der einzige Kandidat für eine Extremstelle.
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Extrempunkt gibt, wissen wir also schon, dass unser Kandidat diese Extremstelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Wir können also unsere mit Parameter behaftete Extremstelle mit der Vorgabe aus der Aufgabenstellung (x= ) gleichsetzen und nach t auflösen
D=R\{
Wir multiplizieren den Nenner weg!
= | |⋅( ) | ||
= | |||
= |
= | | | ||
= | |:() | ||
= |
(Alle Lösungen sind auch in der Definitionsmenge).
Für t= liegt die Extremstelle auf der Geraden x= .
bestimmter x-Wert eines Wendepunkts
Beispiel:
Die Funktion ft mit besitzt genau einen Wendepunkt. Für welchen Wert von t ist der Wendepunkt auf der Geraden x= ?
Als erstes leitet man die Funktion zwei mal ab.
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
= | | - ( ) | ||
= | |: | ||
= |
Die Lösung x= ist nun der einzige Kandidat für eine Wendestelle.
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Wendepunkt gibt, wissen wir also schon, dass unser Kandidat diese Wendestelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Wir können also unsere mit Parameter behaftete Wendestelle mit der Vorgabe aus der Aufgabenstellung (x= ) gleichsetzen und nach t auflösen
= | |⋅ 3 | ||
= | |||
= | | | ||
= | |:() | ||
= |
Für t= liegt die Wendestelle auf der Geraden x= .
bestimmter y-Wert eines Extrempunkts
Beispiel:
Die Funktion ft mit besitzt genau einen Extrempunkt. Für welche Werte von t liegt der Extrempunkt auf der Geraden y= ?
Als erstes leitet man die Funktion ab.
=>
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
= | |⋅ 2 | ||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Extrempunkt gibt, wissen wir also schon, dass unser Kandidat diese Extremstelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f() =
=
Man erhält so den Extrempunkt EP:(|
)
Wir können also den y-Wert unseres mit Parameter behafteten Extrempunktes mit der Vorgabe aus der Aufgabenstellung (y= ) gleichsetzen und nach t auflösen
D=R\{
Wir multiplizieren den Nenner weg!
= | |⋅( ) | ||
= | |||
= |
= | | | ||
= | |:() | ||
= |
(Alle Lösungen sind auch in der Definitionsmenge).
Für t= liegt der Extrempunkt auf der Geraden y= .
bestimmter y-Wert eines Wendepunkts
Beispiel:
Die Funktion ft mit besitzt genau einen Wendepunkt. Für welche Werte von t liegt der Wendepunkt auf der Geraden y= ?
Als erstes leitet man die Funktion zwei mal ab.
=
=
=
=
=
=
=
=
=
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
= | |||
= | |||
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Wendepunkt gibt, wissen wir also schon, dass unser Kandidat diese Wendestelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f() =
=
Man erhält so den Wendepunkt WP:(|
)
Wir können also den y-Wert unseres mit Parameter behafteten Wendepunkts mit der Vorgabe aus der Aufgabenstellung (y= ) gleichsetzen und nach t auflösen
= | |: | ||
= | | | ||
t1 | = |
|
=
|
t2 | = |
|
=
|
Für t=
Ortskurve eines Extrempunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion ab.
=>
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
= | | - (
|
|
|
= |
|
|: |
|
= |
|
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Extrempunkt gibt, wissen wir also schon, dass unser Kandidat diese Extremstelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Extrempunkt EP:(
Es gilt nun :
(I)
(II)
Um eine Ortskurve mit einer Funktionsgleichung nur mit x und y, also ohne t, zu erhalten, lösen wir die Gleichung (I) erst mal nach t auf:
|
= |
|
|⋅ 2 |
|
= |
|
Dieses t setzen wir nun in (II) ein und erhalten so die gewünschte x-y-Gleichung der Ortskurve:
y =
Die gesuchte Ortskurve ist also: y =
Ortskurve eines Wendepunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion zwei mal ab.
=
=
=
=
=
=
=
=
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
= | ||
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
= | | - (
|
|
|
= |
|
|: |
x1 | = |
|
2. Fall:
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Wendepunkt gibt, wissen wir also schon, dass unser Kandidat diese Wendestelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Wendepunkt WP:(
Es gilt nun :
(I)
(II)
Um eine Ortskurve mit einer Funktionsgleichung nur mit x und y, also ohne t, zu erhalten, lösen wir die Gleichung (I) erst mal nach t auf:
|
= |
|
|⋅ 2 |
|
= |
|
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Dieses t setzen wir nun in (II) ein und erhalten so die gewünschte x-y-Gleichung der Ortskurve:
y =
Die gesuchte Ortskurve ist also: y =
Gemeinsamer Punkt einer Schar
Beispiel:
Gegeben ist für alle t ≠ 0 die Funktionenschar ft mit
Wenn es einen Punkt gibt, durch den alle Graphen von ft verlaufen, so muss dieser Punkt insbesondere auch auf den Graphen von
f1 mit f1(x) =
f2
mit f2(x) =
liegen.
Also suchen wir erst mal die Schnittpunkte dieser beiden Graphen und setzen diese gleich:
Da links und rechts jeweils die gleiche Basis (und der gleiche Koeffizient)
steht,
sind die linke und die rechte Seite genau dann gleich, wenn die Exponenten gleich sind.
Wir setzen also nur die Exponenten gleich:
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|:( |
|
= |
|
Die Graphen von f1 und f2 schneiden sich also bei x =
ft(
Da ft(
Tangente durch Ursprung mit 45°
Beispiel:
Für a ∈ R ist eine Funktion fa mit fa(x) =
Beschreibe wie der Graph von f2 aus dem Graph von f0 hervorgeht.
Für ein bestimmtes a gibt es eine Stelle x0, an der die Tangente an den Graph von fa im Punkt B(x0|fa(x0)) mit dem Steigungswinkel von 45° durch den Ursprung verläuft. Bestimme ein mögliches a.
Wir betrachten also erstmal f0 mit f0=
Wenn eine Tangente den Steigungswinkel 45° haben soll so muss die Steigung in diesem Punkt m = tan(45°) = 1 sein.
Da ja die Graphen der verschiedenen fa alle die gleiche Form und nur unterschiedliche Lagen haben, suchen wir erstmal bei der einfachsten Funktion der Schar, f0 nach einer Stelle mit Steigung 1. Dazu leiten wir erstmal ab:
=
=> f'(x) =
=
Jetzt suchen wir nach einer Stelle mit f'(x) = 1:
D=R\{
Wir multiplizieren den Nenner
|
= |
|
|⋅(
|
|
= |
|
|
|
= |
|
|
= | |
|
|
|
= |
|
=
|
(Alle Lösungen sind auch in der Definitionsmenge).
Damit wissen wir nun, dass im Berührpunkt B(2|f(2)) an f0 eine Tangente mit Steigung 1 angelegt wird.
Wir setzen also x = 2 in f0 ein und erhalten:
Nun setzt man die Ableitung m=1 und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
Da die Tangentensteigung 1 ist, muss der Schnittpunkt der Tangente y=
Wenn wir also f0 um 0 nach rechts verschieben, würde diese Tangente mit der Steigung 1 (und damit mit dem Steigungswinkel 45°) gerade durch den Ursprunge gehen.
Dieser um 0 nach rechts verschobene Graph gehört dann zur Funktion f0 =
Der gesuchte Paremeter a ist somit a = 0.
bestimmter y-Wert eines Wendepunkts
Beispiel:
Die Funktion ft mit
Als erstes leitet man die Funktion zwei mal ab.
=
=
=
=
=
=
=
=
=
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
= | ||
|
= | ||
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
x1 | = |
2. Fall:
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Wendepunkt gibt, wissen wir also schon, dass unser Kandidat diese Wendestelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Wendepunkt WP:(
Wir können also den y-Wert unseres mit Parameter behafteten Wendepunkts mit der Vorgabe aus der Aufgabenstellung
(y=
|
= | |
|
|
t1 | = |
|
=
|
t2 | = |
|
=
|
Für t=
Parameter finden für Anzahl Nullstellen
Beispiel:
Bestimme diejenigen Werte von t, für die ft mit ft(x)=
Für die Nullstellen muss gelten: ft(x)=0, also hier :
Da
Wir lösen diese Gleichung einfach, in dem wir die Koeffizienten in die Mitternachtsformel einsetzen:
x1,2 =
An der Diskriminante
Hierfür untersuchen wir die t-Werte, für die die Diskriminante = 0 wird:
|
= | ||
|
= | |
|
|
|
= | |:
|
|
|
= | |
|
|
t1 | = |
|
=
|
t2 | = |
|
=
|
Jetzt können wir drei Fälle unterscheiden:
- Für t <
- 3 3 144 - 16 t 2 t x 2 - 12 x + 4 t
(z.B. bei t = -4 ist die Diskriminante144 - 16 ⋅ ( - 4 ) 2 - 112 144 - 16 ⋅ 4 2 - 112 - Für t =
- 3 3 144 - 16 t 2 - Für
- 3 3 144 - 16 t 2 t x 2 - 12 x + 4 t
(z.B. bei t=0 ist die Diskriminante144 - 16 ⋅ 0 2 144
Der gesuchte Bereich mit "keine Nullstelle" ist somit: t <
max. y-Wert eines Extrempunkts
Beispiel:
Die Graphen aller Funktionen der Schar ft mit
Als erstes leitet man die Funktion ab.
=>
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
= | |
|
|
|
= |
|
|: |
|
= |
|
Die Lösung x=
Da in der Aufgabenstellung bereits angegeben ist, dass es genau einen Tiefpunkt gibt, wissen wir also schon, dass unser Kandidat diese Extremstelle sein muss, und wir müssen ihn nicht weiter mit einer hinreichenden Bedingung prüfen.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Tiefpunkt TP:(
Gesucht ist ja die tiefste Lage des Tiefpunkt. Wir suchen also den tiefsten Wert von
Dazu leiten wir
g'(t) =
|
= | |
|
|
|
= |
|
|: |
|
= |
|
Man erkennt ja, dass
Parameter für gleichsch. Tangentendreieck
Beispiel:
An den Graph von fa mit
Da ja die Katheten dieses Tangentendreiecks auf den Koordinatenachsen liegen, können auch nur diese Strecken auf den beiden Achsen gleichlang werden.
Wenn dann dieses rechtwinklige Dreieck auch noch gleichschenklig ist, betragen die Basiswinkel 45° und die Steigung der Tangente muss mt = -1 sein.
Diese Tangentsteigung können wir über die Ableitungsfunktion an der Stelle x = 4 berechnen:
Dieses m =
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
-0.63 ist somit der gesuchte Wert für a.
Parameter für Tangentendreieck best.
Beispiel:
An den Graph von fa mit
Für bestimmte Werte von a schließt die Tangente mit den positiven Achsen eine Fläche mit dem Inhalt
Wir müssen erst mal die Tangente in Abhängigkeit von a berechnen:
Zuerst braucht man die Ableitung von
=
Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen x-Wert in die Ableitung ein:
=
Damit wissen wir nun schon, dass die Tangente die Gleichung t: y=
Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also
Wir erhalten so also den Punkt B(2|
Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
also c=
Damit erhält man als Geradengleichung für die Tangente: y=
Da wir ja mit c =
Für die Schnittstelle der Tangente mit der x-Achse setzen wir
|
= | | - (
|
|
|
= |
|
|:( |
|
= |
|
Die x-Achse und die y-Achse sind ja die Katheten des Dreiecks mit dem gegebenen Flächeninhalt. Somit gilt für den Flächeninhalt dieses rechtwinkligen Dreiecks:
A =
Dieser Flächeninhalt hat ja laut der Aufgabenstellung den Wert
D=R\{
Wir multiplizieren den Nenner
|
= |
|
|⋅(
|
|
= |
|
|
|
= |
|
|
|
= |
|
|
= |
|
|⋅ 10 |
|
= |
|
|
|
= |
|
|
|
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
a1,2 =
a1,2 =
a1,2 =
a1 =
a2 =
(Alle Lösungen sind auch in der Definitionsmenge).
-3.75 und -0.6 sind somit gültige Werte für a.