Aufgabenbeispiele von Extrem- + Wendepkte
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Extrempunkte (schwerer) BF
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit :
Zuerst multiplizieren wir den Term aus
Als erstes leitet man die Funktion zwei mal ab.
=>
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
| = | |||
| = |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
| = | | | ||
| x2 | = |
Die Lösungen
,
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f'(x0)>0).
1.: x=
f''() = = = >0
Das heißt bei x = ist ein Tiefpunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f() =
=
Man erhält so den Tiefpunkt T:(|
)
2.: x=
f''() = = = <0
Das heißt bei x = ist ein Hochpunkt.
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f() =
=
Man erhält so den Hochpunkt H:(|
Extrempunkte (schwerer)
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit :
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
= 0
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x1,2 =
x1,2 =
x1,2 =
x1 =
= =
x2 =
Die Lösungen
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f'(x0)>0).
1.: x=- 5
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
2.: x=4
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
Minimaler Abstand zur x-Achse
Beispiel:
Zeige, dass der Graph der Funktion f mit
Bestimme diesen kleinsten Abstand.
Wir sehen am negativen Vorzeichen vor der höchsten Potenz (
Als erstes leitet man die Funktion zwei mal ab.
=>
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= | ||
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
x2,3 =
x2,3 =
x2,3 =
x2 =
x3 =
Die Lösungen
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f'(x0)>0).
1.: x=- 3
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
≈ H:(-3|-0.75)
2.: x=0
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
3.: x=2
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
Eigentlich hätte es gereicht nur die Hochpunkte zu untersuchen.
Wir sehen also, dass selbst der höchste Hochpunkt einen negativen y-Wert hat. Also müssen alle Punkte unter der x-Achse liegen.
Der höchste Punkt muss ja ein Hochpunkt sein, daher sehen wir dass der Hochpunkt (-3|
Dieser geringste Abstand ist also |
Extrempunkte e-Funktion BF
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
|
= | |
|
|
|
|
= |
|
|: |
| x1 | = |
|
2. Fall:
|
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f'(x0)>0).
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Tiefpunkt T:(
≈ T:(-1|-0.736)
Extrempunkte (e-Funktionen)
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit
Bitte alle Werte (mit dem WTR) fertig rechnen und als als Dezimalzahlen angeben.
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
|
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f'(x0)>0).
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
Wendepunkte (schwerer) BF
Beispiel:
Berechne alle Wendepunkte von f mit
Zuerst multiplizieren wir den Term aus
Als erstes leitet man die Funktion drei mal ab.
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
|
= | |
|
|
|
|
= |
|
|: |
|
|
= |
|
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in die dritte Ableitung.
Ist die dritte Ableitung des Punktes ungleich 0, so handelt es sich um einen Wendepunkt (hinreichende Bedingung: f''(x0)=0 und f'''(x0)≠0).
Überprüfung bei x =
f'''(
Da f'''(
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Wendepunkt: WP(
Wendetangente
Beispiel:
Bestimme eine Gleichung der Tangente im Wendepunkte des Graphen der Funktion f mit
Zuerst muss natürlich mal der Wendepunkt berechnet werden:
Als erstes leitet man die Funktion drei mal ab.
=
=
=
Die notwendige Bedingung für einen Wendepunkt ist f''(x)=0.
(Wendestellen sind Extremstellen in der Ableitung, also haben Wendepunkten die Steigung 0 in f').
Man setzt nun also die zweite Ableitung gleich 0, um die einzig möglichen x-Werte für Wendepunkte zu bestimmen.
|
|
= | |
|
|
|
|
= |
|
|:( |
|
|
= |
|
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in die dritte Ableitung.
Ist die dritte Ableitung des Punktes ungleich 0, so handelt es sich um einen Wendepunkt (hinreichende Bedingung: f''(x0)=0 und f'''(x0)≠0).
Überprüfung bei x =
f'''(
Da f'''(
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzen werden.
f(
Man erhält so den Wendepunkt: WP(
Jetzt müssen wir die Tangente im Wendepunkt anlegen:
Um die Steigung der Tangente zu erhalten, setzen wir den gegebenen x-Wert in die Ableitung ein:
=
=
=
Damit wissen wir nun schon, dass die Tangente die Gleichung t: y=
Um noch das c zu bestimmen, brauchen wir einen Punkt, den wir in die Gleichung einsetzen können.
Dazu müssen wir noch den y-Wert des Berührpunkts bestimmen, also
Wir erhalten so also den Punkt B(4|
Nun setzt man die errechnete Ableitung und die errechneten Punktkoordinaten in eine allgemeine Geradengleichung (y=mx+c) ein:
also c=
Damit erhält man als Geradengleichung für die Tangente: y=
t-Wert bestimmen, dass f'(x0)=y0 (ohne e)
Beispiel:
Für welche t ist die Tangente von f mit
Gib alle Möglichkeiten für t an.
Um die Tangentensteigung zu bestimmen, leiten wir die Funktion erst einmal ab:
In diese Ableitung setzen wir x=
f'(
Damit die Tangente parallel zur Geraden y=
also f'(
Dazu lösen wir die Gleichung
|
|
= |
|
|: |
|
|
= |
|
Für t=
Extrempunkte e-Funktion Anwend.
Beispiel:
Berechne die Koordinaten aller Extrempunkte des Graphen von f mit
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
=
=
Die notwendige Bedingung für einen Extrempunkt ist f'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also f'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von f zu bestimmen.
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
|
|
= | |
|
|
|
|
= |
|
|:( |
| x1 | = |
|
2. Fall:
|
|
= |
Diese Gleichung hat keine Lösung!
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in f''(x):
Ist f''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: f'(x0)=0
und f''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
f'(x0)=0 und f'(x0)>0).
f''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in f(x) eingesetzt werden.
f(
Man erhält so den Hochpunkt H:(
≈ H:(10|9.707)
max. Flächeninhalt am Graph
Beispiel:
Der Punkte P liegt im 1. Quadrant auf dem Graph der Funktion f mit
Wir schreiben u für den x-Wert des Punkts P und da der Punkt P auf dem Graph von f liegt, muss der y-Wert f(u) sein, also P(u|f(u)).
An der Skizze erkennt man, dass dann die Seiten des achsenparallelen Rechteck die Längen u und f(u) haben. Folglich gilt für den Flächeninhalt dieses
Rechtecks:
A = u ⋅ f(u) =
Wir suchen also ein Maximum von
Als erstes leitet man die Funktion zwei mal ab.
=>
=
Die notwendige Bedingung für einen Extrempunkt ist A'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also A'(u) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von A zu bestimmen.
eingesetzt in die Mitternachtsformel (a-b-c-Formel):
u1,2 =
u1,2 =
u1,2 =
u1 =
u2 =
Die Lösungen
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in A''(u):
Ist A''(u) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: A'(u0)=0
und A''(u0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
A'(u0)=0 und A'(u0)>0).
1.: u=- 9
A''(
Das heißt bei u =
Um dessen y-Wert zu erhalten muss der entsprechende u-Wert in A(u) eingesetzt werden.
A(
Man erhält so den Tiefpunkt T:(
2.: u=5
A''(
Das heißt bei u =
Um dessen y-Wert zu erhalten muss der entsprechende u-Wert in A(u) eingesetzt werden.
A(
Man erhält so den Hochpunkt H:(
≈ H:(5|133.333)
Den maximalen Flächeninhalt erhalten wir also, wenn wir als x-Koordinate des gesuchten Punkts u =
Den zugehörigen y-Wert erhalten wir, wenn wir x =
f(
Somit sind die Koordinaten des gesuchten Punkts P(
Den maximalen Flächeninhalt erhalten wir ja, wenn wir u =
Extremwertaufgabe (+Nebenbed.)
Beispiel:
Eine Firma, die Elektroautos herstellt, verkauft in einem Land 100000 Autos im Jahr. Dabei verdient sie an jedem Auto im Schnitt 4100 €. Marktforschungen haben nun ergeben, dass Preisreduzierungen von 100€ pro Auto jeweils eine Steigerung der Anzahl der verkauften Autos um 4% zur Folge hätten. Bei welcher Preisreduzierung würde das Unternehmen den größten Gewinn erwirtschaften?
Als Zielfunktion für den Gewinn ergibt sich somit G(x) =
=
=
=
Da diese Zielfunktion für den Gewinn maximal werden soll, suchen wir deren Maximum:
Als erstes leitet man die Funktion zwei mal ab.
=>
=
=
Die notwendige Bedingung für einen Extrempunkt ist G'(x)=0.
(Alle Extrempunkte haben die Steigung 0).
Man setzt nun also G'(x) gleich 0, um die einzig möglichen x-Werte für Extrempunkte von G zu bestimmen.
|
|
= | |
|
|
|
|
= |
|
|:( |
|
|
= |
|
Die Lösung x=
Die einfachste Möglichkeit, um diese Kandidaten zu überprüfen, ist das Einsetzen dieser x-Werte in G''(x):
Ist G''(x) < 0, so handelt es sich um einen Hochpunkt (hinreichende Bedingung: G'(x0)=0
und G''(x0)<0).
Ist sie größer 0 handelt es sich um einen Tiefpunkt (hinreichende Bedingung:
G'(x0)=0 und G'(x0)>0).
G''(
Das heißt bei x =
Um dessen y-Wert zu erhalten muss der entsprechende x-Wert in G(x) eingesetzt werden.
G(
Man erhält so den Hochpunkt H:(
Den maximalen Gewinn erhalten wir also, wenn wir x =
Als maximaler Gesamtgewinn erhalten wir:
G(
=
=
=
