Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Ein Promi macht Urlaub in einem Ferienclub. Dort sind noch weitere 70 Gäste. Wie groß darf der Bekanntheitsgrad des Promis höchstens sein, dass ihn mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 28 erkennen und dumm anlabern?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.28 | 0.9893 |
| 0.29 | 0.9824 |
| 0.3 | 0.9724 |
| 0.31 | 0.9582 |
| 0.32 | 0.9388 |
| 0.33 | 0.9134 |
| 0.34 | 0.8813 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(70,X,28) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.33 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Bei einem Zufallsexperiment ist die Wahrscheinlichkeit für einen Treffer unbekannt. Das Zufallsexperinment wird 74 mal wiederholt (bzw. die Stichprobe hat die Größe 74)Wie hoch muss die Einzelwahrscheinlichkeit p mindestens sein, dass mit einer Wahrscheinlich von mind. 80% mindestens 51 Treffer erzielt werden?
| p | P(X≥51)=1-P(X≤50) |
|---|---|
| ... | ... |
| 0.68 | 0.4881 |
| 0.69 | 0.5621 |
| 0.7 | 0.6348 |
| 0.71 | 0.7038 |
| 0.72 | 0.7669 |
| 0.73 | 0.8225 |
| ... | ... |
Es muss gelten: =0.8 (oder mehr)
oder eben: 1- =0.8 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(74,X,50) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.73 die gesuchte Wahrscheinlichkeit über 0.8 ist.
zwei unabhängige Binom.
Beispiel:
Ein Biathlet hat beim Liegendschießen eine Trefferquote von 95% und im Stehen 88%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:
- 4 mal Liegendschießen und 5 mal Stehendschießen
- 5 mal Liegendschießen und 4 mal Stehendschießen
- 5 mal Liegendschießen und 5 mal Stehendschießen
4 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 4 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.
= ≈ 0.2036Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.
= ≈ 0.5277Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2036 ⋅ 0.5277 = 0.10743972
5 mal Liegendschießen und 4 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.
= ≈ 0.7738Die Wahrscheinlichkeit für 4 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.
= ≈ 0.3598Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.7738 ⋅ 0.3598 = 0.27841324
5 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.95.
= ≈ 0.7738Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.
= ≈ 0.5277Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.7738 ⋅ 0.5277 = 0.40833426
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.1074 + 0.2784 + 0.4083 = 0.7942
feste Reihenfolge im Binomialkontext
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 60% wirft 7 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 7 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 4 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXOOOO
OXXXOOO
OOXXXOO
OOOXXXO
OOOOXXX
Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 5 ⋅ ⋅ ≈ 0.0276
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 16% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 107 Tickets für ihr Flugzeug mit 96 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 96 Treffer bei 107 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.84, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und p=0.84.
= + + +... + = 0.96588678293146 ≈ 0.9659(TI-Befehl: binomcdf(107,0.84,96))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9659) und 'überbucht'(p=0.0341).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
| Ereignis | P |
|---|---|
| nicht überbucht -> nicht überbucht -> nicht überbucht | |
| nicht überbucht -> nicht überbucht -> überbucht | |
| nicht überbucht -> überbucht -> nicht überbucht | |
| nicht überbucht -> überbucht -> überbucht | |
| überbucht -> nicht überbucht -> nicht überbucht | |
| überbucht -> nicht überbucht -> überbucht | |
| überbucht -> überbucht -> nicht überbucht | |
| überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht: ; überbucht: ;
Die relevanten Pfade sind:- 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
- 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=)
- 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=)
- 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Ein Lehrer verteilt bei einer Klassenarbeit an alle seine 26 Schülerinnen und Schüler jeweils einen Glückskeks. Wie groß ist die Wahrscheinlichkeit, dass von den 20 Mädchen genau 2 einen Glückskeks mit einer Peperoni und von den Jungs genau 0 einen Glückskeks mit einer Peperoni erwischen .
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 20
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Kekse mit einer Peperoni drin an. X ist binomialverteilt mit n=20 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.2684.
Analog betrachten wir nun die restlichen 6 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Kekse mit einer Peperoni drin an. Y ist binomialverteilt mit n=6 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.4488.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.2684 ⋅ 0.4488 ≈ 0.1205
