Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Ein Promi macht Urlaub in einem Ferienclub. Dort sind noch weitere 69 Gäste. Wie groß darf der Bekanntheitsgrad des Promis höchstens sein, dass ihn mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 39 erkennen und dumm anlabern?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.44 | 0.9864 |
| 0.45 | 0.9793 |
| 0.46 | 0.9694 |
| 0.47 | 0.9559 |
| 0.48 | 0.9379 |
| 0.49 | 0.9148 |
| 0.5 | 0.8858 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(69,X,39) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.49 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Eine Fluggesellschaft verkauft 74 Flugtickets für einen bestimmten Flug. Das sind 39 Tickets mehr, als das Flugzeug Plätze hat. Wie hoch muss die Wahrscheinlichkeit, dass ein Ticketkäufer nicht mitfliegt, mindestens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?
| p | P(X≥39)=1-P(X≤38) |
|---|---|
| ... | ... |
| 0.55 | 0.6973 |
| 0.56 | 0.7551 |
| 0.57 | 0.8066 |
| 0.58 | 0.851 |
| 0.59 | 0.8882 |
| 0.6 | 0.9184 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
oder eben: 1- =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(74,X,38) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.6 die gesuchte Wahrscheinlichkeit über 0.9 ist.
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 60 und am Samstag bei 45 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 24 und 37 am Samstag so zwischen 24 und 32 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 73% höher als am Freitag mit 51%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 24 und 37 Treffer bei 60 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.51 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9632 - 0.0331 ≈ 0.9301 berechnen.
TI-Befehl: binomcdf(60,0.51,37)- binomcdf(60,0.51,23)
Samstag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=45 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 24 und 32 Treffer bei 45 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.73 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.4432 - 0.0014 ≈ 0.4418 berechnen.
TI-Befehl: binomcdf(45,0.73,32)- binomcdf(45,0.73,23)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.9301 ⋅ 0.4418 ≈ 0.4109
feste Reihenfolge im Binomialkontext
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 60%. Es wird 7 mal gedreht.Bestimme die Wahrscheinlichkeit, dass dabei genau 4 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 3 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXOOO
OXXXXOO
OOXXXXO
OOOXXXX
Es gibt also genau 4 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 4 ⋅ ⋅ ≈ 0.0332
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 5% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.05, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.05.
= + + = 0.87289350433907 ≈ 0.8729(TI-Befehl: binomcdf(25,0.05,2))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.8729) und 'nicht ok'(p=0.1271).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
| Ereignis | P |
|---|---|
| kiste ok -> kiste ok | |
| kiste ok -> nicht ok | |
| nicht ok -> kiste ok | |
| nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok: ; nicht ok: ;
Die relevanten Pfade sind:- 'kiste ok'-'kiste ok' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Eine faire Münze wird 27 mal geworfen. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses: Von den ersten 19 Versuchen landen höchstens 11 Versuche mit Zahl oben und von den restlichen Versuchen erscheint genau 3 mal "Zahl".
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 19
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. X ist binomialverteilt mit n=19 und p=0.5.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.8204.
Analog betrachten wir nun die restlichen 8 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. Y ist binomialverteilt mit n=8 und p=0.5.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.2188.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.8204 ⋅ 0.2188 ≈ 0.1795
