Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 59 Ausspielungen nicht öfters als 38 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?

Lösung einblenden
pP(X≤k)
......
0.520.9863
0.530.98
0.540.9713
0.550.9597
0.560.9445
0.570.9251
0.580.9008
......

Es muss gelten: Pp59 (X38) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(59,X,38) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.57 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 63 Wiederholungen 56 mal (oder mehr) rot zu treffen bei mind. 80% liegt?

Lösung einblenden
pP(X≥56)=1-P(X≤55)
......
0.870.4154
0.880.5107
0.890.6099
0.90.7073
0.910.7964
0.920.8712
......

Es muss gelten: Pp63 (X56) =0.8 (oder mehr)

oder eben: 1- Pp63 (X55) =0.8 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(63,X,55) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.92 die gesuchte Wahrscheinlichkeit über 0.8 ist.

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 93% und im Stehen 84%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=4) = ( 5 4 ) 0.934 0.071 ≈ 0.2618
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.84.

P0.845 (X=5) = ( 5 5 ) 0.845 0.160 ≈ 0.4182
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2618 ⋅ 0.4182 = 0.10948476

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.84.

P0.845 (X=4) = ( 5 4 ) 0.844 0.161 ≈ 0.3983
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6957 ⋅ 0.3983 = 0.27709731

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.84.

P0.845 (X=5) = ( 5 5 ) 0.845 0.160 ≈ 0.4182
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6957 ⋅ 0.4182 = 0.29094174


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1095 + 0.2771 + 0.2909 = 0.6775

feste Reihenfolge im Binomialkontext

Beispiel:

7 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ( 7 3 ) ( 1 6 ) 3 ( 5 6 ) 4

Dabei gibt ja ( 1 6 ) 3 ( 5 6 ) 4 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 4 Nicht-Treffern und ( 7 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 7 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOO

OXXXOOO

OOXXXOO

OOOXXXO

OOOOXXX

Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅ ( 1 6 ) 3 ( 5 6 ) 4 ≈ 0.0112

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 16% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 106 Tickets für ihr Flugzeug mit 95 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 95 Treffer bei 106 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.84, also P0.84106 (X95)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und p=0.84.

P0.84106 (X95) = P0.84106 (X=0) + P0.84106 (X=1) + P0.84106 (X=2) +... + P0.84106 (X=95) = 0.96287177459902 ≈ 0.9629
(TI-Befehl: binomcdf(106,0.84,95))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9629) und 'überbucht'(p=0.0371).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,8928
nicht überbucht -> nicht überbucht -> überbucht0,0344
nicht überbucht -> überbucht -> nicht überbucht0,0344
nicht überbucht -> überbucht -> überbucht0,0013
überbucht -> nicht überbucht -> nicht überbucht0,0344
überbucht -> nicht überbucht -> überbucht0,0013
überbucht -> überbucht -> nicht überbucht0,0013
überbucht -> überbucht -> überbucht0,0001

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0,9629; überbucht: 0,0371;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,8928)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,0344)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,0344)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,0344)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,8928 + 0,0344 + 0,0344 + 0,0344 = 0,996


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,26 entsteht. Es wird eine Stichprobe der Menge 70 entnommen. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 10 Stück dieser Stichprobe gleich mal genau 3 defekt sind und von den restlichen der Stickprobe höchstens 12 nicht funktionieren.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=10 und p=0.26.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.2610 (X=3) ≈ 0.2563.

Analog betrachten wir nun die restlichen 60 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der defekten Chips an. Y ist binomialverteilt mit n=60 und p=0.26.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2660 (Y12) ≈ 0.1818.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.2610 (X=3) P0.2660 (Y12) = 0.2563 ⋅ 0.1818 ≈ 0.0466