Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 62 Ausspielungen nicht öfters als 40 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?

Lösung einblenden
pP(X≤k)
......
0.520.9885
0.530.9828
0.540.9749
0.550.9642
0.560.95
0.570.9316
0.580.9082
......

Es muss gelten: Pp62 (X40) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(62,X,40) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.57 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 65 Wiederholungen 36 mal (oder mehr) rot zu treffen bei mind. 70% liegt?

Lösung einblenden
pP(X≥36)=1-P(X≤35)
......
0.530.3372
0.540.3981
0.550.4617
0.560.5265
0.570.5907
0.580.6528
......

Es muss gelten: Pp65 (X36) =0.7 (oder mehr)

oder eben: 1- Pp65 (X35) =0.7 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(65,X,35) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.58 die gesuchte Wahrscheinlichkeit über 0.7 ist.

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 40% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 3 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 3 kommen kann:

  • 0 mal unten und 3 mal oben
  • 1 mal unten und 2 mal oben
  • 2 mal unten und 1 mal oben
  • 3 mal unten und 0 mal oben

0 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=0) = ( 3 0 ) 0.40 0.63 ≈ 0.216
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=3) = ( 3 3 ) 0.43 0.60 ≈ 0.064
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.216 ⋅ 0.064 = 0.013824

1 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.432 ⋅ 0.288 = 0.124416

2 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.288 ⋅ 0.432 = 0.124416

3 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=3) = ( 3 3 ) 0.43 0.60 ≈ 0.064
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=0) = ( 3 0 ) 0.40 0.63 ≈ 0.216
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p4=0.064 ⋅ 0.216 = 0.013824


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 4 Kombinationen addiert:

0.0138 + 0.1244 + 0.1244 + 0.0138 = 0.2765

feste Reihenfolge im Binomialkontext

Beispiel:

10 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 10 Versuchen mit der Formel von Bernoulli berechnen: ( 10 4 ) ( 1 6 ) 4 ( 5 6 ) 6

Dabei gibt ja ( 1 6 ) 4 ( 5 6 ) 6 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 6 Nicht-Treffern und ( 10 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 10 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXOOOOOO

OXXXXOOOOO

OOXXXXOOOO

OOOXXXXOOO

OOOOXXXXOO

OOOOOXXXXO

OOOOOOXXXX

Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅ ( 1 6 ) 4 ( 5 6 ) 6 ≈ 0.0018

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 8% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.08, also P0.0825 (X2)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.08.

P0.0825 (X2) = P0.0825 (X=0) + P0.0825 (X=1) + P0.0825 (X=2) = 0.67683323573499 ≈ 0.6768
(TI-Befehl: binomcdf(25,0.08,2))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.6768) und 'nicht ok'(p=0.3232).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0,4581
kiste ok -> nicht ok0,2187
nicht ok -> kiste ok0,2187
nicht ok -> nicht ok0,1045

Einzel-Wahrscheinlichkeiten: kiste ok: 0,6768; nicht ok: 0,3232;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'kiste ok'-'kiste ok' (P=0,4581)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,4581 = 0,4581


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein normaler Würfel wird 30 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 20 Versuchen höchstens 4 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 1 Sechser gewürfelt werden?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 20 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Sechser-Würfe an. X ist binomialverteilt mit n=20 und p= 1 6 .

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P 1 6 20 (X4) ≈ 0.7687.

Analog betrachten wir nun die restlichen 10 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Sechser-Würfe an. Y ist binomialverteilt mit n=10 und p= 1 6 .

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P 1 6 10 (Y1) = 1- P 1 6 10 (Y0) ≈ 0.8385.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P 1 6 20 (X4) P 1 6 10 (Y1) = 0.7687 ⋅ 0.8385 ≈ 0.6446