Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Eine Fluggesellschaft hat 43 Plätze in ihrem Flugzeug. Trotzdem werden 77 Flugtickets verkauft. Wie hoch darf die Wahrscheinlichkeit, dass ein Ticketkäufer auch tatsächlich mitfliegt, höchstens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?

Lösung einblenden
pP(X≤k)
......
0.440.9861
0.450.9784
0.460.9675
0.470.9524
0.480.9321
0.490.9059
0.50.8728
......

Es muss gelten: Pp77 (X43) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(77,X,43) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.49 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 97 Wiederholungen 21 mal (oder mehr) rot zu treffen bei mind. 90% liegt?

Lösung einblenden
pP(X≥21)=1-P(X≤20)
......
0.220.5728
0.230.6622
0.240.7418
0.250.8092
0.260.8637
0.270.9059
......

Es muss gelten: Pp97 (X21) =0.9 (oder mehr)

oder eben: 1- Pp97 (X20) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(97,X,20) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.27 die gesuchte Wahrscheinlichkeit über 0.9 ist.

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 50% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 2 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 2 kommen kann:

  • 0 mal unten und 2 mal oben
  • 1 mal unten und 1 mal oben
  • 2 mal unten und 0 mal oben

0 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=0) = ( 3 0 ) 0.50 0.53 ≈ 0.125
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=2) = ( 3 2 ) 0.22 0.81 ≈ 0.096
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.125 ⋅ 0.096 = 0.012

1 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=1) = ( 3 1 ) 0.51 0.52 ≈ 0.375
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=1) = ( 3 1 ) 0.21 0.82 ≈ 0.384
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.375 ⋅ 0.384 = 0.144

2 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=2) = ( 3 2 ) 0.52 0.51 ≈ 0.375
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=0) = ( 3 0 ) 0.20 0.83 ≈ 0.512
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.375 ⋅ 0.512 = 0.192


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.012 + 0.144 + 0.192 = 0.348

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 80% wirft 9 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 9 Versuchen irgendwann einmal eine Serie mit 5 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 5 ) 0.8 5 0.2 4

Dabei gibt ja 0.8 5 0.2 4 die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 4 Nicht-Treffern und ( 9 5 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 5 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXXOOOO

OXXXXXOOO

OOXXXXXOO

OOOXXXXXO

OOOOXXXXX

Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅ 0.8 5 0.2 4 ≈ 0.0026

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 5% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.05, also P0.0525 (X2)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.05.

P0.0525 (X2) = P0.0525 (X=0) + P0.0525 (X=1) + P0.0525 (X=2) = 0.87289350433907 ≈ 0.8729
(TI-Befehl: binomcdf(25,0.05,2))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.8729) und 'nicht ok'(p=0.1271).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0,762
kiste ok -> nicht ok0,1109
nicht ok -> kiste ok0,1109
nicht ok -> nicht ok0,0162

Einzel-Wahrscheinlichkeiten: kiste ok: 0,8729; nicht ok: 0,1271;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'kiste ok'-'kiste ok' (P=0,762)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,762 = 0,762


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Ein Lehrer verteilt bei einer Klassenarbeit an alle seine 28 Schülerinnen und Schüler jeweils einen Glückskeks. Wie groß ist die Wahrscheinlichkeit, dass von den 18 Mädchen genau 0 einen Glückskeks mit einer Peperoni und von den Jungs genau 1 einen Glückskeks mit einer Peperoni erwischen .

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 18 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Kekse mit einer Peperoni drin an. X ist binomialverteilt mit n=18 und p= 1 8 .

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P 1 8 18 (X=0) ≈ 0.0904.

Analog betrachten wir nun die restlichen 10 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Kekse mit einer Peperoni drin an. Y ist binomialverteilt mit n=10 und p= 1 8 .

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P 1 8 10 (Y=1) ≈ 0.3758.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P 1 8 18 (X=0) P 1 8 10 (Y=1) = 0.0904 ⋅ 0.3758 ≈ 0.034