Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Ein Promi macht Urlaub in einem Ferienclub. Dort sind noch weitere 41 Gäste. Wie groß darf der Bekanntheitsgrad des Promis höchstens sein, dass ihn mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 28 erkennen und dumm anlabern?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.54 | 0.9782 |
| 0.55 | 0.9707 |
| 0.56 | 0.9612 |
| 0.57 | 0.9491 |
| 0.58 | 0.9343 |
| 0.59 | 0.9162 |
| 0.6 | 0.8945 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(41,X,28) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.59 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Eine Fluggesellschaft verkauft 65 Flugtickets für einen bestimmten Flug. Das sind 38 Tickets mehr, als das Flugzeug Plätze hat. Wie hoch muss die Wahrscheinlichkeit, dass ein Ticketkäufer nicht mitfliegt, mindestens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?
| p | P(X≥38)=1-P(X≤37) |
|---|---|
| ... | ... |
| 0.61 | 0.7098 |
| 0.62 | 0.7643 |
| 0.63 | 0.8129 |
| 0.64 | 0.8551 |
| 0.65 | 0.8906 |
| 0.66 | 0.9196 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
oder eben: 1- =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(65,X,37) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.66 die gesuchte Wahrscheinlichkeit über 0.9 ist.
zwei unabhängige Binom.
Beispiel:
Ein Biathlet hat beim Liegendschießen eine Trefferquote von 94% und im Stehen 87%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:
- 4 mal Liegendschießen und 5 mal Stehendschießen
- 5 mal Liegendschießen und 4 mal Stehendschießen
- 5 mal Liegendschießen und 5 mal Stehendschießen
4 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 4 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.
= ≈ 0.2342Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.
= ≈ 0.4984Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2342 ⋅ 0.4984 = 0.11672528
5 mal Liegendschießen und 4 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.
= ≈ 0.7339Die Wahrscheinlichkeit für 4 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.
= ≈ 0.3724Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.7339 ⋅ 0.3724 = 0.27330436
5 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.
= ≈ 0.7339Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.
= ≈ 0.4984Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.7339 ⋅ 0.4984 = 0.36577576
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.1167 + 0.2733 + 0.3658 = 0.7558
feste Reihenfolge im Binomialkontext
Beispiel:
5 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 5 Versuchen mit der Formel von Bernoulli
berechnen:
⋅
⋅
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXO
OXXXX
Es gibt also genau 2 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 2 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 10% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 108 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=108 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 108 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.9, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=108 und p=0.9.
(TI-Befehl: binomcdf(108,0.9,93))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.1201) und 'überbucht'(p=0.8799).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
| Ereignis | P |
|---|---|
| nicht überbucht -> nicht überbucht -> nicht überbucht | |
| nicht überbucht -> nicht überbucht -> überbucht | |
| nicht überbucht -> überbucht -> nicht überbucht | |
| nicht überbucht -> überbucht -> überbucht | |
| überbucht -> nicht überbucht -> nicht überbucht | |
| überbucht -> nicht überbucht -> überbucht | |
| überbucht -> überbucht -> nicht überbucht | |
| überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht:
- 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=
)0,0017 - 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=
)0,0127 - 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=
)0,0127 - 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=
)0,0127
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,45. Es wird 50 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:Von den ersten 10 Versuchen landen genau 6 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 20 mal auf grün gedreht.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=10 und p=0.45.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 40 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=40 und p=0.45.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
