Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Eine Fluggesellschaft hat 50 Plätze in ihrem Flugzeug. Trotzdem werden 78 Flugtickets verkauft. Wie hoch darf die Wahrscheinlichkeit, dass ein Ticketkäufer auch tatsächlich mitfliegt, höchstens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.52 | 0.9928 |
| 0.53 | 0.9884 |
| 0.54 | 0.9818 |
| 0.55 | 0.9724 |
| 0.56 | 0.9592 |
| 0.57 | 0.9412 |
| 0.58 | 0.9174 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(78,X,50) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.57 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Eine Fluggesellschaft verkauft 41 Flugtickets für einen bestimmten Flug. Das sind 35 Tickets mehr, als das Flugzeug Plätze hat. Wie hoch muss die Wahrscheinlichkeit, dass ein Ticketkäufer nicht mitfliegt, mindestens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?
| p | P(X≥35)=1-P(X≤34) |
|---|---|
| ... | ... |
| 0.86 | 0.6516 |
| 0.87 | 0.7202 |
| 0.88 | 0.7842 |
| 0.89 | 0.8413 |
| 0.9 | 0.8898 |
| 0.91 | 0.9286 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
oder eben: 1- =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(41,X,34) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.91 die gesuchte Wahrscheinlichkeit über 0.9 ist.
zwei unabhängige Binom.
Beispiel:
Ein Biathlet hat beim Liegendschießen eine Trefferquote von 91% und im Stehen 87%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:
- 4 mal Liegendschießen und 5 mal Stehendschießen
- 5 mal Liegendschießen und 4 mal Stehendschießen
- 5 mal Liegendschießen und 5 mal Stehendschießen
4 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 4 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.
= ≈ 0.3086Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.
= ≈ 0.4984Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.3086 ⋅ 0.4984 = 0.15380624
5 mal Liegendschießen und 4 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.
= ≈ 0.624Die Wahrscheinlichkeit für 4 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.
= ≈ 0.3724Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.624 ⋅ 0.3724 = 0.2323776
5 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.91.
= ≈ 0.624Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.87.
= ≈ 0.4984Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.624 ⋅ 0.4984 = 0.3110016
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.1538 + 0.2324 + 0.311 = 0.6972
feste Reihenfolge im Binomialkontext
Beispiel:
9 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 9 Versuchen mit der Formel von Bernoulli
berechnen:
⋅
⋅
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXOOOOO
OXXXXOOOO
OOXXXXOOO
OOOXXXXOO
OOOOXXXXO
OOOOOXXXX
Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 6 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 15 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 90% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für mindestens 15 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.9,
also
Dies berechnet man über die Gegenwahrscheinlichkeit:
≈ 1 - 0.0113 ≈ 0.9887 (TI-Befehl: 1-binomcdf(20,0.9,14))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.9887) und 'zu wenig'(p=0.0113).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'
| Ereignis | P |
|---|---|
| genügend Treffer -> genügend Treffer | |
| genügend Treffer -> zu wenig | |
| zu wenig -> genügend Treffer | |
| zu wenig -> zu wenig |
Einzel-Wahrscheinlichkeiten: genügend Treffer:
- 'genügend Treffer'-'zu wenig' (P=
)0,0112 - 'zu wenig'-'genügend Treffer' (P=
)0,0112 - 'genügend Treffer'-'genügend Treffer' (P=
)0,9775
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein normaler Würfel wird 32 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 14 Versuchen höchstens 3 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 3 Sechser gewürfelt werden?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 14
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Sechser-Würfe an.
X ist binomialverteilt mit n=14 und p=
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 18 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Sechser-Würfe an.
Y ist binomialverteilt mit n=18 und p=
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
