Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Bei einem Zufallsexperiment ist die Wahrscheinlichkeit für einen Treffer unbekannt. Das Zufallsexperinment wird 89 mal wiederholt (bzw. die Stichprobe hat die Größe 89).Wie hoch darf die Einzelwahrscheinlichkeit p höchstens sein, dass mit einer Wahrscheinlichkeit von mind. 50% höchstens 56 Treffer erzielt werden?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.58 | 0.8529 |
| 0.59 | 0.8046 |
| 0.6 | 0.7474 |
| 0.61 | 0.6822 |
| 0.62 | 0.6102 |
| 0.63 | 0.5338 |
| 0.64 | 0.4555 |
| ... | ... |
Es muss gelten: =0.5 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(89,X,56) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.63 die gesuchte Wahrscheinlichkeit über 0.5 ist.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Bei einem Zufallsexperiment ist die Wahrscheinlichkeit für einen Treffer unbekannt. Das Zufallsexperinment wird 58 mal wiederholt (bzw. die Stichprobe hat die Größe 58)Wie hoch muss die Einzelwahrscheinlichkeit p mindestens sein, dass mit einer Wahrscheinlich von mind. 90% mindestens 45 Treffer erzielt werden?
| p | P(X≥45)=1-P(X≤44) |
|---|---|
| ... | ... |
| 0.79 | 0.6739 |
| 0.8 | 0.7401 |
| 0.81 | 0.7999 |
| 0.82 | 0.852 |
| 0.83 | 0.8952 |
| 0.84 | 0.9294 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
oder eben: 1- =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(58,X,44) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.84 die gesuchte Wahrscheinlichkeit über 0.9 ist.
zwei unabhängige Binom.
Beispiel:
Ein Biathlet hat beim Liegendschießen eine Trefferquote von 93% und im Stehen 88%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:
- 4 mal Liegendschießen und 5 mal Stehendschießen
- 5 mal Liegendschießen und 4 mal Stehendschießen
- 5 mal Liegendschießen und 5 mal Stehendschießen
4 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 4 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.
= ≈ 0.2618Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.
= ≈ 0.5277Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2618 ⋅ 0.5277 = 0.13815186
5 mal Liegendschießen und 4 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.
= ≈ 0.6957Die Wahrscheinlichkeit für 4 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.
= ≈ 0.3598Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6957 ⋅ 0.3598 = 0.25031286
5 mal Liegendschießen und 5 mal Stehendschießen
Die Wahrscheinlichkeit für 5 mal Liegendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.
= ≈ 0.6957Die Wahrscheinlichkeit für 5 mal Stehendschießen ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.88.
= ≈ 0.5277Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6957 ⋅ 0.5277 = 0.36712089
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.1382 + 0.2503 + 0.3671 = 0.7556
feste Reihenfolge im Binomialkontext
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 70% wirft 10 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 10 Versuchen irgendwann einmal eine Serie mit 5 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 10 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 5 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXXOOOOO
OXXXXXOOOO
OOXXXXXOOO
OOOXXXXXOO
OOOOXXXXXO
OOOOOXXXXX
Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 6 ⋅ ⋅ ≈ 0.0025
Kombination Binom.-Baumdiagramm
Beispiel:
Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 10% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.1, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.1.
= + + +... + = 0.90200637880454 ≈ 0.902(TI-Befehl: binomcdf(25,0.1,4))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.902) und 'nicht ok'(p=0.098).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'nicht ok'
| Ereignis | P |
|---|---|
| kiste ok -> kiste ok | |
| kiste ok -> nicht ok | |
| nicht ok -> kiste ok | |
| nicht ok -> nicht ok |
Einzel-Wahrscheinlichkeiten: kiste ok: ; nicht ok: ;
Die relevanten Pfade sind:- 'kiste ok'-'kiste ok' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein normaler Würfel wird 26 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 11 Versuchen höchstens 2 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 1 Sechser gewürfelt werden?
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 11
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Sechser-Würfe an. X ist binomialverteilt mit n=11 und p=.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.7268.
Analog betrachten wir nun die restlichen 15 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Sechser-Würfe an. Y ist binomialverteilt mit n=15 und p=.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als = 1- ≈ 0.9351.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.7268 ⋅ 0.9351 ≈ 0.6796
