Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Bei einem Zufallsexperiment ist die Wahrscheinlichkeit für einen Treffer unbekannt. Das Zufallsexperinment wird 93 mal wiederholt (bzw. die Stichprobe hat die Größe 93).Wie hoch darf die Einzelwahrscheinlichkeit p höchstens sein, dass mit einer Wahrscheinlichkeit von mind. 50% höchstens 52 Treffer erzielt werden?

Lösung einblenden
pP(X≤k)
......
0.510.8536
0.520.8047
0.530.7471
0.540.6815
0.550.6095
0.560.5333
0.570.4556
......

Es muss gelten: Pp93 (X52) =0.5 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(93,X,52) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.56 die gesuchte Wahrscheinlichkeit über 0.5 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Bei einem Zufallsexperiment ist die Wahrscheinlichkeit für einen Treffer unbekannt. Das Zufallsexperinment wird 63 mal wiederholt (bzw. die Stichprobe hat die Größe 63)Wie hoch muss die Einzelwahrscheinlichkeit p mindestens sein, dass mit einer Wahrscheinlich von mind. 90% mindestens 33 Treffer erzielt werden?

Lösung einblenden
pP(X≥33)=1-P(X≤32)
......
0.550.7078
0.560.7604
0.570.8076
0.580.8487
0.590.8837
0.60.9127
......

Es muss gelten: Pp63 (X33) =0.9 (oder mehr)

oder eben: 1- Pp63 (X32) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(63,X,32) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.6 die gesuchte Wahrscheinlichkeit über 0.9 ist.

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 50% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 3 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 3 kommen kann:

  • 0 mal unten und 3 mal oben
  • 1 mal unten und 2 mal oben
  • 2 mal unten und 1 mal oben
  • 3 mal unten und 0 mal oben

0 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=0) = ( 3 0 ) 0.50 0.53 ≈ 0.125
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=3) = ( 3 3 ) 0.43 0.60 ≈ 0.064
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.125 ⋅ 0.064 = 0.008

1 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=1) = ( 3 1 ) 0.51 0.52 ≈ 0.375
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.375 ⋅ 0.288 = 0.108

2 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=2) = ( 3 2 ) 0.52 0.51 ≈ 0.375
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.375 ⋅ 0.432 = 0.162

3 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=3) = ( 3 3 ) 0.53 0.50 ≈ 0.125
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=0) = ( 3 0 ) 0.40 0.63 ≈ 0.216
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p4=0.125 ⋅ 0.216 = 0.027


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 4 Kombinationen addiert:

0.008 + 0.108 + 0.162 + 0.027 = 0.305

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 35% wirft 7 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 7 Versuchen irgendwann einmal eine Serie mit 5 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ( 7 5 ) 0.35 5 0.65 2

Dabei gibt ja 0.35 5 0.65 2 die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 2 Nicht-Treffern und ( 7 5 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 7 5 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXXOO

OXXXXXO

OOXXXXX

Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅ 0.35 5 0.65 2 ≈ 0.0067

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 15% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 105 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 105 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.85, also P0.85105 (X93)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und p=0.85.

P0.85105 (X93) = P0.85105 (X=0) + P0.85105 (X=1) + P0.85105 (X=2) +... + P0.85105 (X=93) = 0.88021681820209 ≈ 0.8802
(TI-Befehl: binomcdf(105,0.85,93))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.8802) und 'überbucht'(p=0.1198).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,6819
nicht überbucht -> nicht überbucht -> überbucht0,0928
nicht überbucht -> überbucht -> nicht überbucht0,0928
nicht überbucht -> überbucht -> überbucht0,0126
überbucht -> nicht überbucht -> nicht überbucht0,0928
überbucht -> nicht überbucht -> überbucht0,0126
überbucht -> überbucht -> nicht überbucht0,0126
überbucht -> überbucht -> überbucht0,0017

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0,8802; überbucht: 0,1198;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,6819)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,0928)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,0928)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,0928)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,6819 + 0,0928 + 0,0928 + 0,0928 = 0,9604


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Eine faire Münze wird 14 mal geworfen. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses: Von den ersten 5 Versuchen landen höchstens 2 Versuche mit Zahl oben und von den restlichen Versuchen erscheint genau 4 mal "Zahl".

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 5 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. X ist binomialverteilt mit n=5 und p=0.5.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.55 (X2) ≈ 0.5.

Analog betrachten wir nun die restlichen 9 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. Y ist binomialverteilt mit n=9 und p=0.5.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.59 (Y=4) ≈ 0.2461.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.55 (X2) P0.59 (Y=4) = 0.5 ⋅ 0.2461 ≈ 0.1231