Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Ein Promi macht Urlaub in einem Ferienclub. Dort sind noch weitere 68 Gäste. Wie groß darf der Bekanntheitsgrad des Promis höchstens sein, dass ihn mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 43 erkennen und dumm anlabern?

Lösung einblenden
pP(X≤k)
......
0.510.9843
0.520.9766
0.530.9659
0.540.9514
0.550.9324
0.560.9081
0.570.8777
......

Es muss gelten: Pp68 (X43) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(68,X,43) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.56 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Eine Fluggesellschaft verkauft 86 Flugtickets für einen bestimmten Flug. Das sind 60 Tickets mehr, als das Flugzeug Plätze hat. Wie hoch muss die Wahrscheinlichkeit, dass ein Ticketkäufer nicht mitfliegt, mindestens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?

Lösung einblenden
pP(X≥60)=1-P(X≤59)
......
0.710.6498
0.720.7233
0.730.7891
0.740.8456
0.750.8917
0.760.9276
......

Es muss gelten: Pp86 (X60) =0.9 (oder mehr)

oder eben: 1- Pp86 (X59) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(86,X,59) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.76 die gesuchte Wahrscheinlichkeit über 0.9 ist.

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 60% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 3 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 3 kommen kann:

  • 0 mal unten und 3 mal oben
  • 1 mal unten und 2 mal oben
  • 2 mal unten und 1 mal oben
  • 3 mal unten und 0 mal oben

0 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=0) = ( 3 0 ) 0.60 0.43 ≈ 0.064
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=3) = ( 3 3 ) 0.23 0.80 ≈ 0.008
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.064 ⋅ 0.008 = 0.000512

1 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=1) = ( 3 1 ) 0.61 0.42 ≈ 0.288
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=2) = ( 3 2 ) 0.22 0.81 ≈ 0.096
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.288 ⋅ 0.096 = 0.027648

2 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=2) = ( 3 2 ) 0.62 0.41 ≈ 0.432
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=1) = ( 3 1 ) 0.21 0.82 ≈ 0.384
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.432 ⋅ 0.384 = 0.165888

3 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=3) = ( 3 3 ) 0.63 0.40 ≈ 0.216
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=0) = ( 3 0 ) 0.20 0.83 ≈ 0.512
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p4=0.216 ⋅ 0.512 = 0.110592


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 4 Kombinationen addiert:

0.0005 + 0.0276 + 0.1659 + 0.1106 = 0.3046

feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 9 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 5 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 5 ) 0.7 5 0.3 4

Dabei gibt ja 0.7 5 0.3 4 die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 4 Nicht-Treffern und ( 9 5 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 5 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXXOOOO

OXXXXXOOO

OOXXXXXOO

OOOXXXXXO

OOOOXXXXX

Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅ 0.7 5 0.3 4 ≈ 0.0068

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 5% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 25 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 2 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 2 Treffer bei 25 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.05, also P0.0525 (X2)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=25 und p=0.05.

P0.0525 (X2) = P0.0525 (X=0) + P0.0525 (X=1) + P0.0525 (X=2) = 0.87289350433907 ≈ 0.8729
(TI-Befehl: binomcdf(25,0.05,2))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.8729) und 'nicht ok'(p=0.1271).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0,762
kiste ok -> nicht ok0,1109
nicht ok -> kiste ok0,1109
nicht ok -> nicht ok0,0162

Einzel-Wahrscheinlichkeiten: kiste ok: 0,8729; nicht ok: 0,1271;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'kiste ok'-'kiste ok' (P=0,762)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,762 = 0,762


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,45. Es wird 70 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:Von den ersten 5 Versuchen landen genau 3 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 27 mal auf grün gedreht.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 5 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=5 und p=0.45.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.455 (X=3) ≈ 0.2757.

Analog betrachten wir nun die restlichen 65 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=65 und p=0.45.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.4565 (Y27) = 1- P0.4565 (Y26) ≈ 0.7527.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.455 (X=3) P0.4565 (Y27) = 0.2757 ⋅ 0.7527 ≈ 0.2075