Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Eine Produktionsstätte für HighTech-Chips hat Probleme mit der Qualitätssicherung. Ein Großhändler nimmt die übliche Liefermenge von 66 Stück nur an, wenn nicht mehr als 43 Teile defekt sind. Wie hoch darf der Prozentsatz der fehlerhaften Teile höchstens sein, dass eine Lieferung mit einer Wahrscheinlichkeit von mind. 90% angenommen werden.
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.53 | 0.9887 |
| 0.54 | 0.983 |
| 0.55 | 0.9749 |
| 0.56 | 0.9637 |
| 0.57 | 0.9488 |
| 0.58 | 0.9294 |
| 0.59 | 0.9045 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(66,X,43) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.58 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Ein Basketballtrainer sucht einen neuen Spieler, der mit 70% Wahrscheinlichkeit von 86 Freiwürfen mindestens 69 mal trifft. Welche Trefferquote braucht solch ein Spieler mindestens?
| p | P(X≥69)=1-P(X≤68) |
|---|---|
| ... | ... |
| 0.77 | 0.2849 |
| 0.78 | 0.3639 |
| 0.79 | 0.4511 |
| 0.8 | 0.5429 |
| 0.81 | 0.6346 |
| 0.82 | 0.7214 |
| ... | ... |
Es muss gelten: =0.7 (oder mehr)
oder eben: 1- =0.7 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(86,X,68) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.82 die gesuchte Wahrscheinlichkeit über 0.7 ist.
zwei unabhängige Binom.
Beispiel:
Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 60% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:
- 1 mal unten und 3 mal oben
- 2 mal unten und 2 mal oben
- 3 mal unten und 1 mal oben
1 mal unten und 3 mal oben
Die Wahrscheinlichkeit für 1 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.288Die Wahrscheinlichkeit für 3 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.
= ≈ 0.008Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.288 ⋅ 0.008 = 0.002304
2 mal unten und 2 mal oben
Die Wahrscheinlichkeit für 2 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.432Die Wahrscheinlichkeit für 2 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.
= ≈ 0.096Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.432 ⋅ 0.096 = 0.041472
3 mal unten und 1 mal oben
Die Wahrscheinlichkeit für 3 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.
= ≈ 0.216Die Wahrscheinlichkeit für 1 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.
= ≈ 0.384Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.216 ⋅ 0.384 = 0.082944
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.0023 + 0.0415 + 0.0829 = 0.1267
feste Reihenfolge im Binomialkontext
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 70%. Es wird 9 mal gedreht.Bestimme die Wahrscheinlichkeit, dass dabei genau 4 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 5 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXXOOOOO
OXXXXOOOO
OOXXXXOOO
OOOXXXXOO
OOOOXXXXO
OOOOOXXXX
Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 6 ⋅ ⋅ ≈ 0.0035
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 15% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 106 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 106 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.85, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=106 und p=0.85.
= + + +... + = 0.82148488896898 ≈ 0.8215(TI-Befehl: binomcdf(106,0.85,93))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.8215) und 'überbucht'(p=0.1785).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
| Ereignis | P |
|---|---|
| nicht überbucht -> nicht überbucht -> nicht überbucht | |
| nicht überbucht -> nicht überbucht -> überbucht | |
| nicht überbucht -> überbucht -> nicht überbucht | |
| nicht überbucht -> überbucht -> überbucht | |
| überbucht -> nicht überbucht -> nicht überbucht | |
| überbucht -> nicht überbucht -> überbucht | |
| überbucht -> überbucht -> nicht überbucht | |
| überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht: ; überbucht: ;
Die relevanten Pfade sind:- 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
- 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=)
- 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=)
- 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,55. Es wird 80 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:Von den ersten 5 Versuchen landen genau 3 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 43 mal auf grün gedreht.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 5
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=5 und p=0.55.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.3369.
Analog betrachten wir nun die restlichen 75 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=75 und p=0.55.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als = 1- ≈ 0.3873.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.3369 ⋅ 0.3873 ≈ 0.1305
