Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Eine Fluggesellschaft hat 38 Plätze in ihrem Flugzeug. Trotzdem werden 53 Flugtickets verkauft. Wie hoch darf die Wahrscheinlichkeit, dass ein Ticketkäufer auch tatsächlich mitfliegt, höchstens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?

Lösung einblenden
pP(X≤k)
......
0.590.9802
0.60.9721
0.610.9613
0.620.9473
0.630.9294
0.640.907
0.650.8796
......

Es muss gelten: Pp53 (X38) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(53,X,38) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.64 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Ein Basketballtrainer sucht einen neuen Spieler, der mit 70% Wahrscheinlichkeit von 91 Freiwürfen mindestens 60 mal trifft. Welche Trefferquote braucht solch ein Spieler mindestens?

Lösung einblenden
pP(X≥60)=1-P(X≤59)
......
0.630.3215
0.640.3953
0.650.4737
0.660.5539
0.670.6326
0.680.7068
......

Es muss gelten: Pp91 (X60) =0.7 (oder mehr)

oder eben: 1- Pp91 (X59) =0.7 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(91,X,59) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.68 die gesuchte Wahrscheinlichkeit über 0.7 ist.

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 70% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:

  • 1 mal unten und 3 mal oben
  • 2 mal unten und 2 mal oben
  • 3 mal unten und 1 mal oben

1 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.7.

P0.73 (X=1) = ( 3 1 ) 0.71 0.32 ≈ 0.189
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=3) = ( 3 3 ) 0.23 0.80 ≈ 0.008
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.189 ⋅ 0.008 = 0.001512

2 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.7.

P0.73 (X=2) = ( 3 2 ) 0.72 0.31 ≈ 0.441
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=2) = ( 3 2 ) 0.22 0.81 ≈ 0.096
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.441 ⋅ 0.096 = 0.042336

3 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.7.

P0.73 (X=3) = ( 3 3 ) 0.73 0.30 ≈ 0.343
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=1) = ( 3 1 ) 0.21 0.82 ≈ 0.384
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.343 ⋅ 0.384 = 0.131712


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0015 + 0.0423 + 0.1317 = 0.1756

feste Reihenfolge im Binomialkontext

Beispiel:

Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 10%. Es wird 8 mal gedreht.Bestimme die Wahrscheinlichkeit, dass dabei genau 4 mal in den grünen Bereich gedreht wird und diese Drehungen unmittelbar hintereinander erfolgen (also ohne, dass dazwischen mal nicht in den grünen Bereich gedreht wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 8 Versuchen mit der Formel von Bernoulli berechnen: ( 8 4 ) 0.1 4 0.9 4

Dabei gibt ja 0.1 4 0.9 4 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 4 Nicht-Treffern und ( 8 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 8 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXOOOO

OXXXXOOO

OOXXXXOO

OOOXXXXO

OOOOXXXX

Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅ 0.1 4 0.9 4 ≈ 0.0003

Kombination Binom.-Baumdiagramm

Beispiel:

Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 85% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.85,
also P0.8520 (X18) .

Dies berechnet man über die Gegenwahrscheinlichkeit: P0.8520 (X18) = 1 - P0.8520 (X17)

≈ 1 - 0.5951 ≈ 0.4049 (TI-Befehl: 1-binomcdf(20,0.85,17))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.4049) und 'zu wenig'(p=0.5951).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'

EreignisP
genügend Treffer -> genügend Treffer0,1639
genügend Treffer -> zu wenig0,241
zu wenig -> genügend Treffer0,241
zu wenig -> zu wenig0,3541

Einzel-Wahrscheinlichkeiten: genügend Treffer: 0,4049; zu wenig: 0,5951;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'genügend Treffer'-'zu wenig' (P=0,241)
  • 'zu wenig'-'genügend Treffer' (P=0,241)
  • 'genügend Treffer'-'genügend Treffer' (P=0,1639)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,241 + 0,241 + 0,1639 = 0,6459


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,23 entsteht. Es wird eine Stichprobe der Menge 50 entnommen. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 10 Stück dieser Stichprobe gleich mal genau 2 defekt sind und von den restlichen der Stickprobe höchstens 18 nicht funktionieren.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=10 und p=0.23.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.2310 (X=2) ≈ 0.2942.

Analog betrachten wir nun die restlichen 40 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der defekten Chips an. Y ist binomialverteilt mit n=40 und p=0.23.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2340 (Y18) ≈ 0.9994.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.2310 (X=2) P0.2340 (Y18) = 0.2942 ⋅ 0.9994 ≈ 0.294