Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Eine Fluggesellschaft hat 27 Plätze in ihrem Flugzeug. Trotzdem werden 97 Flugtickets verkauft. Wie hoch darf die Wahrscheinlichkeit, dass ein Ticketkäufer auch tatsächlich mitfliegt, höchstens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?

Lösung einblenden
pP(X≤k)
......
0.170.9974
0.180.9941
0.190.9878
0.20.9767
0.210.9586
0.220.9313
0.230.8929
......

Es muss gelten: Pp97 (X27) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(97,X,27) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.22 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 57 Wiederholungen 21 mal (oder mehr) rot zu treffen bei mind. 80% liegt?

Lösung einblenden
pP(X≥21)=1-P(X≤20)
......
0.370.5596
0.380.6203
0.390.6777
0.40.7309
0.410.7791
0.420.8217
......

Es muss gelten: Pp57 (X21) =0.8 (oder mehr)

oder eben: 1- Pp57 (X20) =0.8 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(57,X,20) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.42 die gesuchte Wahrscheinlichkeit über 0.8 ist.

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 93% und im Stehen 81%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=4) = ( 5 4 ) 0.934 0.071 ≈ 0.2618
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=5) = ( 5 5 ) 0.815 0.190 ≈ 0.3487
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2618 ⋅ 0.3487 = 0.09128966

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=4) = ( 5 4 ) 0.814 0.191 ≈ 0.4089
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6957 ⋅ 0.4089 = 0.28447173

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.93.

P0.935 (X=5) = ( 5 5 ) 0.935 0.070 ≈ 0.6957
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=5) = ( 5 5 ) 0.815 0.190 ≈ 0.3487
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6957 ⋅ 0.3487 = 0.24259059


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0913 + 0.2845 + 0.2426 = 0.6184

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 65% wirft 8 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 8 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 8 Versuchen mit der Formel von Bernoulli berechnen: ( 8 3 ) 0.65 3 0.35 5

Dabei gibt ja 0.65 3 0.35 5 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 5 Nicht-Treffern und ( 8 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 8 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOO

OXXXOOOO

OOXXXOOO

OOOXXXOO

OOOOXXXO

OOOOOXXX

Es gibt also genau 6 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 6 ⋅ 0.65 3 0.35 5 ≈ 0.0087

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 11% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 107 Tickets für ihr Flugzeug mit 99 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 99 Treffer bei 107 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.89, also P0.89107 (X99)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und p=0.89.

P0.89107 (X99) = P0.89107 (X=0) + P0.89107 (X=1) + P0.89107 (X=2) +... + P0.89107 (X=99) = 0.9128421781513 ≈ 0.9128
(TI-Befehl: binomcdf(107,0.89,99))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9128) und 'überbucht'(p=0.0872).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,7605
nicht überbucht -> nicht überbucht -> überbucht0,0727
nicht überbucht -> überbucht -> nicht überbucht0,0727
nicht überbucht -> überbucht -> überbucht0,0069
überbucht -> nicht überbucht -> nicht überbucht0,0727
überbucht -> nicht überbucht -> überbucht0,0069
überbucht -> überbucht -> nicht überbucht0,0069
überbucht -> überbucht -> überbucht0,0007

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0,9128; überbucht: 0,0872;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,7605)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,0727)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,0727)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,0727)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,7605 + 0,0727 + 0,0727 + 0,0727 = 0,9785


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 15 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 2 richtig errät?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.254 (X=0) ≈ 0.3164.

Analog betrachten wir nun die restlichen 11 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=11 und p=0.25.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2511 (Y2) ≈ 0.4552.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.254 (X=0) P0.2511 (Y2) = 0.3164 ⋅ 0.4552 ≈ 0.144