Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Bei einem Zufallsexperiment ist die Wahrscheinlichkeit für einen Treffer unbekannt. Das Zufallsexperinment wird 100 mal wiederholt (bzw. die Stichprobe hat die Größe 100).Wie hoch darf die Einzelwahrscheinlichkeit p höchstens sein, dass mit einer Wahrscheinlichkeit von mind. 70% höchstens 48 Treffer erzielt werden?

Lösung einblenden
pP(X≤k)
......
0.40.9577
0.410.9356
0.420.9056
0.430.8665
0.440.8178
0.450.7596
0.460.6926
......

Es muss gelten: Pp100 (X48) =0.7 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(100,X,48) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.45 die gesuchte Wahrscheinlichkeit über 0.7 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Eine Fluggesellschaft verkauft 91 Flugtickets für einen bestimmten Flug. Das sind 38 Tickets mehr, als das Flugzeug Plätze hat. Wie hoch muss die Wahrscheinlichkeit, dass ein Ticketkäufer nicht mitfliegt, mindestens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?

Lösung einblenden
pP(X≥38)=1-P(X≤37)
......
0.430.6332
0.440.703
0.450.7658
0.460.8203
0.470.866
0.480.9029
......

Es muss gelten: Pp91 (X38) =0.9 (oder mehr)

oder eben: 1- Pp91 (X37) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(91,X,37) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.48 die gesuchte Wahrscheinlichkeit über 0.9 ist.

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 40% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:

  • 1 mal unten und 3 mal oben
  • 2 mal unten und 2 mal oben
  • 3 mal unten und 1 mal oben

1 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=3) = ( 3 3 ) 0.43 0.60 ≈ 0.064
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.432 ⋅ 0.064 = 0.027648

2 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.288 ⋅ 0.288 = 0.082944

3 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=3) = ( 3 3 ) 0.43 0.60 ≈ 0.064
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.064 ⋅ 0.432 = 0.027648


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0276 + 0.0829 + 0.0276 = 0.1382

feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 7 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ( 7 4 ) 0.7 4 0.3 3

Dabei gibt ja 0.7 4 0.3 3 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 3 Nicht-Treffern und ( 7 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 7 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXOOO

OXXXXOO

OOXXXXO

OOOXXXX

Es gibt also genau 4 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 4 ⋅ 0.7 4 0.3 3 ≈ 0.0259

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 18% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 105 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 105 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.82, also P0.82105 (X93)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und p=0.82.

P0.82105 (X93) = P0.82105 (X=0) + P0.82105 (X=1) + P0.82105 (X=2) +... + P0.82105 (X=93) = 0.97540991135717 ≈ 0.9754
(TI-Befehl: binomcdf(105,0.82,93))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9754) und 'überbucht'(p=0.0246).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,928
nicht überbucht -> nicht überbucht -> überbucht0,0234
nicht überbucht -> überbucht -> nicht überbucht0,0234
nicht überbucht -> überbucht -> überbucht0,0006
überbucht -> nicht überbucht -> nicht überbucht0,0234
überbucht -> nicht überbucht -> überbucht0,0006
überbucht -> überbucht -> nicht überbucht0,0006
überbucht -> überbucht -> überbucht0

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0,9754; überbucht: 0,0246;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,928)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,0234)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,0234)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,0234)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,928 + 0,0234 + 0,0234 + 0,0234 = 0,9982


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,22 entsteht. Es wird eine Stichprobe der Menge 80 entnommen. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 10 Stück dieser Stichprobe gleich mal genau 2 defekt sind und von den restlichen der Stickprobe höchstens 18 nicht funktionieren.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=10 und p=0.22.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.2210 (X=2) ≈ 0.2984.

Analog betrachten wir nun die restlichen 70 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der defekten Chips an. Y ist binomialverteilt mit n=70 und p=0.22.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2270 (Y18) ≈ 0.816.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.2210 (X=2) P0.2270 (Y18) = 0.2984 ⋅ 0.816 ≈ 0.2435