Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Bei einem Glücksrad soll mit einer Wahrscheinlichkeit von 90% bei 77 Ausspielungen nicht öfters als 20 mal der grüne Bereich kommen. Wie hoch darf man die Wahrscheinlichkeit für den grünen Bereich auf dem Glücksrad maximal setzen?
p | P(X≤k) |
---|---|
... | ... |
0.15 | 0.9961 |
0.16 | 0.9917 |
0.17 | 0.9839 |
0.18 | 0.9711 |
0.19 | 0.9514 |
0.2 | 0.9232 |
0.21 | 0.8852 |
... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(77,X,20) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.2 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Eine Fluggesellschaft verkauft 83 Flugtickets für einen bestimmten Flug. Das sind 48 Tickets mehr, als das Flugzeug Plätze hat. Wie hoch muss die Wahrscheinlichkeit, dass ein Ticketkäufer nicht mitfliegt, mindestens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?
p | P(X≥48)=1-P(X≤47) |
---|---|
... | ... |
0.6 | 0.6986 |
0.61 | 0.7606 |
0.62 | 0.8152 |
0.63 | 0.8616 |
0.64 | 0.8996 |
0.65 | 0.9296 |
... | ... |
Es muss gelten: =0.9 (oder mehr)
oder eben: 1- =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(83,X,47) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.65 die gesuchte Wahrscheinlichkeit über 0.9 ist.
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 50 und am Samstag bei 45 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 30 und 33 am Samstag so zwischen 20 und 26 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 75% höher als am Freitag mit 49%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 30 und 33 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.49 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9948 - 0.9216 ≈ 0.0732 berechnen.
TI-Befehl: binomcdf(50,0.49,33)- binomcdf(50,0.49,29)
Samstag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=45 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 20 und 26 Treffer bei 45 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.75 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.0085 - 0 ≈ 0.0085 berechnen.
TI-Befehl: binomcdf(45,0.75,26)- binomcdf(45,0.75,19)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.0732 ⋅ 0.0085 ≈ 0.0006
feste Reihenfolge im Binomialkontext
Beispiel:
Ein Basketballspieler mit einer Trefferquote von 35% wirft 7 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 7 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 4 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXOOOO
OXXXOOO
OOXXXOO
OOOXXXO
OOOOXXX
Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 5 ⋅ ⋅ ≈ 0.0383
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 18% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 107 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 107 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.82, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und p=0.82.
= + + +... + = 0.93130739866386 ≈ 0.9313(TI-Befehl: binomcdf(107,0.82,93))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9313) und 'überbucht'(p=0.0687).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
Ereignis | P |
---|---|
nicht überbucht -> nicht überbucht -> nicht überbucht | |
nicht überbucht -> nicht überbucht -> überbucht | |
nicht überbucht -> überbucht -> nicht überbucht | |
nicht überbucht -> überbucht -> überbucht | |
überbucht -> nicht überbucht -> nicht überbucht | |
überbucht -> nicht überbucht -> überbucht | |
überbucht -> überbucht -> nicht überbucht | |
überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: nicht überbucht: ; überbucht: ;
Die relevanten Pfade sind:- 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
- 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=)
- 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=)
- 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,16 entsteht. Es wird eine Stichprobe der Menge 50 entnommen. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 10 Stück dieser Stichprobe gleich mal genau 2 defekt sind und von den restlichen der Stickprobe höchstens 14 nicht funktionieren.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=10 und p=0.16.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.2856.
Analog betrachten wir nun die restlichen 40 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der defekten Chips an. Y ist binomialverteilt mit n=40 und p=0.16.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.9992.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.2856 ⋅ 0.9992 ≈ 0.2854