Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variabl. p (höchstens) nur GTR
Beispiel:
Eine Fluggesellschaft hat 58 Plätze in ihrem Flugzeug. Trotzdem werden 67 Flugtickets verkauft. Wie hoch darf die Wahrscheinlichkeit, dass ein Ticketkäufer auch tatsächlich mitfliegt, höchstens sein, dass das Flugzeug mit einer Wahrscheinlichkeit von mindestens 90% nicht überbucht ist (also dass alle mitfliegen können)?
| p | P(X≤k) |
|---|---|
| ... | ... |
| 0.76 | 0.9891 |
| 0.77 | 0.9826 |
| 0.78 | 0.973 |
| 0.79 | 0.9589 |
| 0.8 | 0.9388 |
| 0.81 | 0.9111 |
| 0.82 | 0.8739 |
| ... | ... |
Es muss gelten: =0.9 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(67,X,58) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.81 die gesuchte Wahrscheinlichkeit über 0.9 ist.
Binomialvert. mit variabl. p (mind.) nur GTR
Beispiel:
Ein Glücksrad soll mit nur zwei verschiedenen Sektoren (blau und rot) gebaut werden. Wie hoch muss man die Einzelwahrscheinlichkeit p mindestens wählen, dass die Wahrscheinlichkeit bei 61 Wiederholungen 49 mal (oder mehr) rot zu treffen bei mind. 50% liegt?
| p | P(X≥49)=1-P(X≤48) |
|---|---|
| ... | ... |
| 0.75 | 0.2106 |
| 0.76 | 0.2658 |
| 0.77 | 0.3289 |
| 0.78 | 0.3986 |
| 0.79 | 0.4734 |
| 0.8 | 0.5509 |
| ... | ... |
Es muss gelten: =0.5 (oder mehr)
oder eben: 1- =0.5 (oder mehr)
Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(61,X,48) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf -
bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.8 die gesuchte Wahrscheinlichkeit über 0.5 ist.
zwei unabhängige Binom.
Beispiel:
Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 50% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:
- 1 mal unten und 3 mal oben
- 2 mal unten und 2 mal oben
- 3 mal unten und 1 mal oben
1 mal unten und 3 mal oben
Die Wahrscheinlichkeit für 1 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.
= ≈ 0.375Die Wahrscheinlichkeit für 3 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.064Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.375 ⋅ 0.064 = 0.024
2 mal unten und 2 mal oben
Die Wahrscheinlichkeit für 2 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.
= ≈ 0.375Die Wahrscheinlichkeit für 2 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.288Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.375 ⋅ 0.288 = 0.108
3 mal unten und 1 mal oben
Die Wahrscheinlichkeit für 3 mal unten ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.
= ≈ 0.125Die Wahrscheinlichkeit für 1 mal oben ist
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.
= ≈ 0.432Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.125 ⋅ 0.432 = 0.054
Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:
0.024 + 0.108 + 0.054 = 0.186
feste Reihenfolge im Binomialkontext
Beispiel:
6 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 6 Versuchen mit der Formel von Bernoulli
berechnen:
⋅
⋅
Dabei gibt ja
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen
XXXXOO
OXXXXO
OOXXXX
Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅
Kombination Binom.-Baumdiagramm
Beispiel:
Ein 10-Klässler bekommt im Schulsport eine 1 als Teilnote, wenn er beim Basketball von 20 Korblegerversuchen mindestens 18 trifft. Weil der Sportlehrer ein nettes Weichei ist, darf der Schüler den Test noch ein zweites mal probieren, wenn er unzufrieden ist. Wie groß ist Wahrscheinlichkeit, dass der Schüler mit seiner Trefferquote von 83% eine 1 bekommt?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'genügend Treffer'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für mindestens 18 Treffer bei 20 Versuchen mit einer Einzelwahrscheinlichkeiten
von 0.83,
also
Dies berechnet man über die Gegenwahrscheinlichkeit:
≈ 1 - 0.6854 ≈ 0.3146 (TI-Befehl: 1-binomcdf(20,0.83,17))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'genügend Treffer' (p=0.3146) und 'zu wenig'(p=0.6854).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 1 mal 'genügend Treffer' oder 2 mal 'genügend Treffer'
| Ereignis | P |
|---|---|
| genügend Treffer -> genügend Treffer | |
| genügend Treffer -> zu wenig | |
| zu wenig -> genügend Treffer | |
| zu wenig -> zu wenig |
Einzel-Wahrscheinlichkeiten: genügend Treffer:
- 'genügend Treffer'-'zu wenig' (P=
)0,2156 - 'zu wenig'-'genügend Treffer' (P=
)0,2156 - 'genügend Treffer'-'genügend Treffer' (P=
)0,099
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Eine faire Münze wird 27 mal geworfen. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses: Von den ersten 13 Versuchen landen höchstens 5 Versuche mit Zahl oben und von den restlichen Versuchen erscheint genau 7 mal "Zahl".
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 13
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. X ist binomialverteilt mit n=13 und p=0.5.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als
Analog betrachten wir nun die restlichen 14 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Würfe bei denen die Zahl sichtbar ist an. Y ist binomialverteilt mit n=14 und p=0.5.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P =
