Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variabl. p (höchstens) nur GTR

Beispiel:

Ein Promi macht Urlaub in einem Ferienclub. Dort sind noch weitere 54 Gäste. Wie groß darf der Bekanntheitsgrad des Promis höchstens sein, dass ihn mit einer Wahrscheinlichkeit von mindestens 90% nicht mehr als 34 erkennen und dumm anlabern?

Lösung einblenden
pP(X≤k)
......
0.50.9799
0.510.9716
0.520.9606
0.530.9465
0.540.9285
0.550.9062
0.560.8791
......

Es muss gelten: Pp54 (X34) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=binomcdf(54,X,34) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden)

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei p=0.55 die gesuchte Wahrscheinlichkeit über 0.9 ist.

Binomialvert. mit variabl. p (mind.) nur GTR

Beispiel:

Bei einem Zufallsexperiment ist die Wahrscheinlichkeit für einen Treffer unbekannt. Das Zufallsexperinment wird 81 mal wiederholt (bzw. die Stichprobe hat die Größe 81)Wie hoch muss die Einzelwahrscheinlichkeit p mindestens sein, dass mit einer Wahrscheinlich von mind. 90% mindestens 78 Treffer erzielt werden?

Lösung einblenden
pP(X≥78)=1-P(X≤77)
......
0.930.1731
0.940.2767
0.950.4186
0.960.5926
0.970.7743
0.980.9204
......

Es muss gelten: Pp81 (X78) =0.9 (oder mehr)

oder eben: 1- Pp81 (X77) =0.9 (oder mehr)

Diese Gleichung gibt man also in den GTR als Funktion ein, wobei das variable p eben als X gesetzt werden muss.
(TI-Befehl: y1=1-binomcdf(81,X,77) - dabei darauf achten, dass X nur zwischen 0 und 1 sein darf - bei TblSet sollte deswegen Δtable auf 0.01 gesetzt werden )

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei p=0.98 die gesuchte Wahrscheinlichkeit über 0.9 ist.

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 60% und oben 30%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 2 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 2 kommen kann:

  • 0 mal unten und 2 mal oben
  • 1 mal unten und 1 mal oben
  • 2 mal unten und 0 mal oben

0 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=0) = ( 3 0 ) 0.60 0.43 ≈ 0.064
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=2) = ( 3 2 ) 0.32 0.71 ≈ 0.189
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.064 ⋅ 0.189 = 0.012096

1 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=1) = ( 3 1 ) 0.61 0.42 ≈ 0.288
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=1) = ( 3 1 ) 0.31 0.72 ≈ 0.441
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.288 ⋅ 0.441 = 0.127008

2 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.6.

P0.63 (X=2) = ( 3 2 ) 0.62 0.41 ≈ 0.432
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.3.

P0.33 (X=0) = ( 3 0 ) 0.30 0.73 ≈ 0.343
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.432 ⋅ 0.343 = 0.148176


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0121 + 0.127 + 0.1482 = 0.2873

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 5% wirft 5 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 5 Versuchen irgendwann einmal eine Serie mit 4 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 5 Versuchen mit der Formel von Bernoulli berechnen: ( 5 4 ) 0.05 4 0.95 1

Dabei gibt ja 0.05 4 0.95 1 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 1 Nicht-Treffern und ( 5 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 5 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXO

OXXXX

Es gibt also genau 2 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 2 ⋅ 0.05 4 0.95 1 ≈ 0

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 10% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 50 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.1, also P0.150 (X4)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.1.

P0.150 (X4) = P0.150 (X=0) + P0.150 (X=1) + P0.150 (X=2) +... + P0.150 (X=4) = 0.43119840682906 ≈ 0.4312
(TI-Befehl: binomcdf(50,0.1,4))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.4312) und 'nicht ok'(p=0.5688).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0,1859
kiste ok -> nicht ok0,2453
nicht ok -> kiste ok0,2453
nicht ok -> nicht ok0,3235

Einzel-Wahrscheinlichkeiten: kiste ok: 0,4312; nicht ok: 0,5688;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'kiste ok'-'kiste ok' (P=0,1859)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,1859 = 0,1859


Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 25 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 4 Aufgaben keine einzige und von den restlichen Fragen nicht mehr als 3 richtig errät?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 4 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenen Antworten an. X ist binomialverteilt mit n=4 und p=0.25.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.254 (X=0) ≈ 0.3164.

Analog betrachten wir nun die restlichen 21 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der zufällig richtig geratenen Antworten an. Y ist binomialverteilt mit n=21 und p=0.25.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.2521 (Y3) ≈ 0.1917.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.254 (X=0) P0.2521 (Y3) = 0.3164 ⋅ 0.1917 ≈ 0.0607