Aufgabenbeispiele von Erwartungswert
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsgröße (ohne Wahrscheinlichkeit)
Beispiel:
Für die Zufallsgröße X: 'Differenz der beiden Würfe' sind folgende Werte möglich:
| Zufallsgröße X | 0 | 1 | 4 | 5 |
| zugehörige Ereignisse | 1 - 1 2 - 2 6 - 6 | 1 - 2 2 - 1 | 2 - 6 6 - 2 | 1 - 6 6 - 1 |
Zufallsgröße WS-Verteilung
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für die Zufallsgröße X: 'Produkt der beiden Glücksräder' sind folgende Werte möglich:
| Zufallsgröße X | X = 1 | X = 2 | X = 3 | X = 4 | X = 6 | X = 9 |
| zugehörige Ergebnisse | 1 - 1 | 1 - 2 2 - 1 | 1 - 3 3 - 1 | 2 - 2 | 2 - 3 3 - 2 | 3 - 3 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
| Zufallsgröße X | X = 1 | X = 2 | X = 3 | X = 4 | X = 6 | X = 9 |
| zugehörige Wahrscheinlichkeit P(X) | ⋅ | ⋅ + ⋅ | ⋅ + ⋅ | ⋅ | ⋅ + ⋅ | ⋅ |
| = | + | + | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
| Zufallsgröße X | 1 | 2 | 3 | 4 | 6 | 9 |
| P(X=k) |
Zufallsgröße (auch ohne zur.)
Beispiel:
In einer Urne sind sechs Kugeln, die mit der Zahl 3 beschriftet sind und vier Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:
| Zufallsgröße X | X = 9 | X = 27 | X = 81 |
| zugehörige Ergebnisse | 3 - 3 | 3 - 9 9 - 3 | 9 - 9 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
| Zufallsgröße X | X = 9 | X = 27 | X = 81 |
| zugehörige Wahrscheinlichkeit P(X) | ⋅ | ⋅ + ⋅ | ⋅ |
| = | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
| Zufallsgröße X | 9 | 27 | 81 |
| P(X=k) |
Zufallsgr. WS-Vert. (ziehen bis erstmals ...)
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 2 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)
Da ja nur 2 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.
Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.
Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:
| Zufallsgröße X | 1 | 2 | 3 |
| P(X=k) |
Zufallsgröße rückwärts
Beispiel:
Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei die Summe der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?
| Zufallsgröße X | 2 | 3 | 4 | 5 | 6 |
| P(X=k) | ? | ? | ? |
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.
Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=2) = heraus lesen, also muss gelten:
p1 ⋅ p1 = (p1)2 = und somit p1 = .
Ebenso gibt es für X=6 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.
Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p3 ⋅ p3 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=6) = heraus lesen, also muss gelten:
p3 ⋅ p3 = (p3)2 = und somit p3 = .
Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also
p2 = 1 - p1 - p3 = = = =
Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p =
Somit erhalten wir:
α1 = ⋅ 360° = 190°
α2 = ⋅ 360° = 40°
α3 = ⋅ 360° = 130°
Erwartungswerte
Beispiel:
Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 36€, bei einer 5 bekommt er 12€, bei einer 4 bekommt er 18€. Würfelt er eine 1, 2 oder 3 so bekommt er 6€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist?
Die Zufallsgröße X beschreibt den Auszahlungsbetrag.
Erwartungswert der Zufallsgröße X
| Ereignis | 1-3 | 4 | 5 | 6 |
| Zufallsgröße xi | 6 | 18 | 12 | 36 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 6⋅ + 18⋅ + 12⋅ + 36⋅
=
=
Einsatz für faires Spiel bestimmen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
| Ereignis | 2 | 4 | 20 | ? |
| Zufallsgröße xi | 2 | 4 | 20 | x |
| Zufallsgröße yi (Gewinn) | -10.75 | -8.75 | 7.25 | x-12.75 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) | ⋅ x | |||
| yi ⋅ P(Y=yi) | ⋅(x-12.75) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 12.75
= 12.75
= 12.75| = | |||
| = | |⋅ 8 | ||
| = | |||
| = | | | ||
| = |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
= 0 = 0| = | |||
| = | |||
| = | |⋅ 8 | ||
| = | |||
| = | | | ||
| = |
In beiden Fällen ist also der gesuchte Betrag: 48€
Erwartungswert ganz offen
Beispiel:
Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
- Das Spiel mit dem Glücksrad muss fair sein
- Der Einsatz soll 9€ betragen
- Der minimale Auszahlungsbetrag soll 6€ sein
- Der maximale Auszahlungsbetrag soll soll 38€ sein
- Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
| Feld1 | Feld2 | Feld3 | Feld4 | |
| X (z.B. Auszahlung) | 6 | 38 | ||
| Y Gewinn (Ausz. - Einsatz) | -3 | 29 | ||
| P(X) = P(Y) | ||||
| Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
| Feld1 | Feld2 | Feld3 | Feld4 | |
| X (z.B. Auszahlung) | 6 | 38 | ||
| Y Gewinn (Ausz. - Einsatz) | -3 | 29 | ||
| P(X) = P(Y) | ||||
| Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von +=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
| Feld1 | Feld2 | Feld3 | Feld4 | |
| X (z.B. Auszahlung) | 6 | 38 | ||
| Y Gewinn (Ausz. - Einsatz) | -3 | 29 | ||
| P(X) = P(Y) | ||||
| Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
| Feld1 | Feld2 | Feld3 | Feld4 | |
| X (z.B. Auszahlung) | 6 | 7.5 | 10.5 | 38 |
| Y Gewinn (Ausz. - Einsatz) | -3 | -1.5 | 1.5 | 29 |
| P(X) = P(Y) | ||||
| Winkel | 120° | 113.79° | 113.79° | 12.41° |
| Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -3⋅ + -1.5⋅ + 1.5⋅ + 29⋅
=
=
=
=
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
In einer Urne sind 8 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 4-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 5-ten Versuch st:
Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.
Erwartungswert der Zufallsgröße X
| Ereignis | 1 | 2 | 3 | 4 | 5 |
| Zufallsgröße xi | 1 | 2 | 3 | 4 | 5 |
| P(X=xi) | |||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 2⋅ + 3⋅ + 4⋅ + 5⋅
=
=
=
=
≈ 1.44
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
In einem Kartenstapel befinden sich 4 Asse und 10 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| As -> As -> As | |
| As -> As -> andereKarte | |
| As -> andereKarte -> As | |
| As -> andereKarte -> andereKarte | |
| andereKarte -> As -> As | |
| andereKarte -> As -> andereKarte | |
| andereKarte -> andereKarte -> As | |
| andereKarte -> andereKarte -> andereKarte |
Die Wahrscheinlichkeit für 0 mal 'As' ist:
Die Wahrscheinlichkeit für 1 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'As' ist:
Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 10 | 20 | 30 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 10⋅ + 20⋅ + 30⋅
=
=
=
=
≈ 8.57
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| Blume -> Blume | |
| Blume -> Raute | |
| Blume -> Stein | |
| Blume -> Krone | |
| Raute -> Blume | |
| Raute -> Raute | |
| Raute -> Stein | |
| Raute -> Krone | |
| Stein -> Blume | |
| Stein -> Raute | |
| Stein -> Stein | |
| Stein -> Krone | |
| Krone -> Blume | |
| Krone -> Raute | |
| Krone -> Stein | |
| Krone -> Krone |
Die Wahrscheinlichkeit für '2 gleiche' ist:
P('Blume'-'Blume') + P('Raute'-'Raute') + P('Stein'-'Stein')
= + + =
Die Wahrscheinlichkeit für '1 Krone' ist:
P('Blume'-'Krone') + P('Raute'-'Krone') + P('Stein'-'Krone') + P('Krone'-'Blume') + P('Krone'-'Raute') + P('Krone'-'Stein')
= + + + + + =
Die Wahrscheinlichkeit für '2 Kronen' ist:
P('Krone'-'Krone')
=
Die Zufallsgröße X beschreibt den ausbezahlten Gewinn bei einem Spiel.
Erwartungswert der Zufallsgröße X
| Ereignis | 2 gleiche | 1 Krone | 2 Kronen |
| Zufallsgröße xi | 3 | 6 | 40 |
| P(X=xi) | |||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 3⋅ + 6⋅ + 40⋅
=
=
=
≈ 2.73
