Aufgabenbeispiele von Erwartungswert
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsgröße (ohne Wahrscheinlichkeit)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:
Zufallsgröße X | -2 | -1 | 0 | 1 | 2 |
zugehörige Ereignisse | 1 - 3 | 1 - 2 2 - 3 | 1 - 1 2 - 2 3 - 3 | 2 - 1 3 - 2 | 3 - 1 |
Zufallsgröße WS-Verteilung
Beispiel:
Drei normale Würfel werden gleichzeitig geworfen. Die Zufallsgröße X beschreibt die Anzahl der gewürfelten 6er. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Anzahl der 6er' sind folgende Werte möglich:
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Ergebnisse | 0 - 0 - 0 | 0 - 0 - 1 0 - 1 - 0 1 - 0 - 0 | 0 - 1 - 1 1 - 0 - 1 1 - 1 - 0 | 1 - 1 - 1 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Wahrscheinlichkeit P(X) | 56 ⋅ 56 ⋅ 56 | 56 ⋅ 56 ⋅ 16 + 56 ⋅ 16 ⋅ 56 + 16 ⋅ 56 ⋅ 56 | 56 ⋅ 16 ⋅ 16 + 16 ⋅ 56 ⋅ 16 + 16 ⋅ 16 ⋅ 56 | 16 ⋅ 16 ⋅ 16 |
= | 125216 | 25216 + 25216 + 25216 | 5216 + 5216 + 5216 | 1216 |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 0 | 1 | 2 | 3 |
P(X=k) | 125216 | 2572 | 572 | 1216 |
Zufallsgröße (auch ohne zur.)
Beispiel:
In einer Urne sind sechs Kugeln, die mit der Zahl 5 beschriftet sind und zwei Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Summe der beiden Kugeln' sind folgende Werte möglich:
Zufallsgröße X | X = 10 | X = 14 | X = 18 |
zugehörige Ergebnisse | 5 - 5 | 5 - 9 9 - 5 | 9 - 9 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 10 | X = 14 | X = 18 |
zugehörige Wahrscheinlichkeit P(X) | 34 ⋅ 57 | 34 ⋅ 27 + 14 ⋅ 67 | 14 ⋅ 17 |
= | 1528 | 314 + 314 | 128 |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 10 | 14 | 18 |
P(X=k) | 1528 | 37 | 128 |
Zufallsgr. WS-Vert. (ziehen bis erstmals ...)
Beispiel:
Aus einem Kartenstapel mit 2 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)
Da ja nur 2 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.
Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.
Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:
Zufallsgröße X | 1 | 2 | 3 |
P(X=k) | 12 | 13 | 16 |
Zufallsgröße rückwärts
Beispiel:
In einer Urne sind 15 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 1, 6 und 7 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?
Zufallsgröße X | 2 | 7 | 8 | 12 | 13 | 14 |
P(X=k) | 16225 | ? | ? | ? | ? | 16225 |
Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.
Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=2) = 16225 heraus lesen, also muss gelten:
p1 ⋅ p1 = (p1)2 = 16225 und somit p1 = 415.
Ebenso gibt es für X=14 nur das Ereignis: '7'-'7', also dass zwei mal hintereinander '7' kommt.
Wenn p3 die Wahrscheinlichkeit von '7' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '7' kommt, gelten: P(X=14) = p3 ⋅ p3 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=14) = 16225 heraus lesen, also muss gelten:
p3 ⋅ p3 = (p3)2 = 16225 und somit p3 = 415.
Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also
p2 = 1 - p1 - p3 = 1-415-415 = 1515 -415 -415 = 715
Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 15 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n15
Somit erhalten wir:
n1 = 415 ⋅ 15 = 4
n6 = 715 ⋅ 15 = 7
n7 = 415 ⋅ 15 = 4
Erwartungswerte
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Die Zufallsgröße X beschreibt die Punktezahl auf einem Sektor des Glücksrads.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 6 | 20 | 50 |
Zufallsgröße xi | 1 | 6 | 20 | 50 |
P(X=xi) | 48 | 28 | 18 | 18 |
xi ⋅ P(X=xi) | 12 | 32 | 52 | 254 |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅48 + 6⋅28 + 20⋅18 + 50⋅18
= 12+ 32+ 52+ 254
= 434
≈ 10.75
Einsatz für faires Spiel bestimmen
Beispiel:
In einer Urne sind 10 Kugeln, die mit 6€ beschriftet sind, 10 Kugeln, die mit 20€ und 10 Kugeln, die mit 30€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 10 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 24€ fair wäre?
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 6 | 20 | 30 | ? |
Zufallsgröße xi | 6 | 20 | 30 | x |
Zufallsgröße yi (Gewinn) | -18 | -4 | 6 | x-24 |
P(X=xi) | 1040 | 1040 | 1040 | 1040 |
xi ⋅ P(X=xi) | 32 | 5 | 152 | 1040 ⋅ x |
yi ⋅ P(Y=yi) | -92 | -1 | 32 | 1040⋅(x-24) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 24
1040·6+1040·20+1040·30+1040x = 24
32+5+152+1040x = 2432+5+152+14x | = | 24 | |
14x+14 | = | 24 | |⋅ 4 |
4(14x+14) | = | 96 | |
x+56 | = | 96 | | -56 |
x | = | 40 |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
1040·(-18)+1040·(-4)+1040·6+1040(x-24) = 0 -92-1+32+14·x+14·(-24) = 0-92-1+32+14·x+14·(-24) | = | ||
-92-1+32+14x-6 | = | ||
14x-10 | = | |⋅ 4 | |
4(14x-10) | = | ||
x-40 | = | | +40 | |
x | = | 40 |
In beiden Fällen ist also der gesuchte Betrag: 40€
Erwartungswert ganz offen
Beispiel:
Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
- Das Spiel mit dem Glücksrad muss fair sein
- Der Einsatz soll 8€ betragen
- Der minimale Auszahlungsbetrag soll 6€ sein
- Der maximale Auszahlungsbetrag soll soll 34€ sein
- Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 6 | 34 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 26 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 6 | 34 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 26 | ||
P(X) = P(Y) | 12 | 126 | ||
Y ⋅ P(Y) | -1 | 1 |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 12+126=713
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-713
=613.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 6 | 34 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 26 | ||
P(X) = P(Y) | 12 | 313 | 313 | 126 |
Y ⋅ P(Y) | -1 | 1 |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 6 | 7 | 9 | 34 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1 | 1 | 26 |
P(X) = P(Y) | 12 | 313 | 313 | 126 |
Winkel | 180° | 83.08° | 83.08° | 13.85° |
Y ⋅ P(Y) | -1 | -313 | 313 | 1 |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -2⋅12 + -1⋅313 + 1⋅313 + 26⋅126
= -1-313+ 313+ 1
= -1313 -313+ 313+ 1313
= 013
= 0
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
Aus einem Kartenstapel mit 10 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 1013
Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 526
Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 5143
Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 1286
Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 2 | 3 | 4 |
Zufallsgröße xi | 1 | 2 | 3 | 4 |
P(X=xi) | 1013 | 526 | 5143 | 1286 |
xi ⋅ P(X=xi) | 1013 | 513 | 15143 | 2143 |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅1013 + 2⋅526 + 3⋅5143 + 4⋅1286
= 1013+ 513+ 15143+ 2143
= 182143
= 1411
≈ 1.27
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
In einem Kartenstapel befinden sich 4 Asse und 12 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
As -> As -> As | 1140 |
As -> As -> andereKarte | 370 |
As -> andereKarte -> As | 370 |
As -> andereKarte -> andereKarte | 1170 |
andereKarte -> As -> As | 370 |
andereKarte -> As -> andereKarte | 1170 |
andereKarte -> andereKarte -> As | 1170 |
andereKarte -> andereKarte -> andereKarte | 1128 |
Die Wahrscheinlichkeit für 0 mal 'As' ist: 1128
Die Wahrscheinlichkeit für 1 mal 'As' ist: 1170 + 1170 + 1170 = 3370
Die Wahrscheinlichkeit für 2 mal 'As' ist: 370 + 370 + 370 = 970
Die Wahrscheinlichkeit für 3 mal 'As' ist: 1140
Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 10 | 20 | 30 |
P(X=xi) | 1128 | 3370 | 970 | 1140 |
xi ⋅ P(X=xi) | 0 | 337 | 187 | 314 |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅1128 + 10⋅3370 + 20⋅970 + 30⋅1140
= 0+ 337+ 187+ 314
= 014+ 6614+ 3614+ 314
= 10514
= 152
≈ 7.5
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
In einem Stapel Karten mit 2 Asse, 2 Könige, 10 Damen und 6 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 400, 2 Damen 220 und 2 Buben 50 Punkte. Außerdem gibt es für ein Paar aus Dame und König 35 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
As -> As | 1190 |
As -> König | 195 |
As -> Dame | 119 |
As -> Bube | 395 |
König -> As | 195 |
König -> König | 1190 |
König -> Dame | 119 |
König -> Bube | 395 |
Dame -> As | 119 |
Dame -> König | 119 |
Dame -> Dame | 938 |
Dame -> Bube | 319 |
Bube -> As | 395 |
Bube -> König | 395 |
Bube -> Dame | 319 |
Bube -> Bube | 338 |
Die Wahrscheinlichkeit für '2 Asse' ist:
P('As'-'As')
= 1190
Die Wahrscheinlichkeit für '2 Könige' ist:
P('König'-'König')
= 1190
Die Wahrscheinlichkeit für '2 Damen' ist:
P('Dame'-'Dame')
= 938
Die Wahrscheinlichkeit für '2 Buben' ist:
P('Bube'-'Bube')
= 338
Die Wahrscheinlichkeit für 'Paar (D&K)' ist:
P('König'-'Dame') + P('Dame'-'König')
= 119 + 119 = 219
Die Zufallsgröße X beschreibt die gewonnenen Punkte.
Erwartungswert der Zufallsgröße X
Ereignis | 2 Asse | 2 Könige | 2 Damen | 2 Buben | Paar (D&K) |
Zufallsgröße xi | 1000 | 400 | 220 | 50 | 35 |
P(X=xi) | 1190 | 1190 | 938 | 338 | 219 |
xi ⋅ P(X=xi) | 10019 | 4019 | 99019 | 7519 | 7019 |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1000⋅1190 + 400⋅1190 + 220⋅938 + 50⋅338 + 35⋅219
= 10019+ 4019+ 99019+ 7519+ 7019
= 127519
≈ 67.11