Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 2 beschriftet sind und drei Kugeln, die mit der Zahl 6 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße X41236
zugehörige
Ereignisse
2 - 22 - 6
6 - 2
6 - 6

Zufallsgröße WS-Verteilung

Beispiel:

In einer Urne sind vier Kugeln, die mit der Zahl 4 beschriftet sind und fünf Kugeln, die mit der Zahl 6 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 16X = 24X = 36
zugehörige
Ergebnisse
4 - 44 - 6
6 - 4
6 - 6
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 16X = 24X = 36
zugehörige
Wahrscheinlichkeit P(X)
4 9 4 9 4 9 5 9
+ 5 9 4 9
5 9 5 9
  = 16 81 20 81 + 20 81 25 81



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X162436
P(X=k) 16 81 40 81 25 81

Zufallsgröße (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch zwei Karten mit dem Wert 2, zwei Karten mit dem Wert 7 und vier 8er.Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen dem größeren und dem kleineren Wert der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 5X = 6
zugehörige
Ergebnisse
2 - 2
7 - 7
8 - 8
7 - 8
8 - 7
2 - 7
7 - 2
2 - 8
8 - 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 5X = 6
zugehörige
Wahrscheinlichkeit P(X)
1 4 1 7
+ 1 4 1 7
+ 1 2 3 7
1 4 4 7
+ 1 2 2 7
1 4 2 7
+ 1 4 2 7
1 4 4 7
+ 1 2 2 7
  = 1 28 + 1 28 + 3 14 1 7 + 1 7 1 14 + 1 14 1 7 + 1 7



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0156
P(X=k) 2 7 2 7 1 7 2 7

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 12 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 3 4 1 5 3 70 3 455 1 1820

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 12 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 3, 6 und 7 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X6910121314
P(X=k) 1 16 ???? 1 16

Lösung einblenden

Für X=6 gibt es nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p1 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=6) = 1 16 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 16 und somit p1 = 1 4 .

Ebenso gibt es für X=14 nur das Ereignis: '7'-'7', also dass zwei mal hintereinander '7' kommt.

Wenn p3 die Wahrscheinlichkeit von '7' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '7' kommt, gelten: P(X=14) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=14) = 1 16 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 16 und somit p3 = 1 4 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 4 - 1 4 = 4 4 - 1 4 - 1 4 = 2 4 = 1 2

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 12 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 12

Somit erhalten wir:

n3 = 1 4 ⋅ 12 = 3

n6 = 1 2 ⋅ 12 = 6

n7 = 1 4 ⋅ 12 = 3

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 200 Punkte, auf jedem fünften Los 15 Punkte, auf jedem vierten Los 12 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 200 15 12 1
Zufallsgröße xi 200 15 12 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 20 3 3 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 200⋅ 1 10 + 15⋅ 1 5 + 12⋅ 1 4 + 1⋅ 9 20

= 20+ 3+ 3+ 9 20
= 529 20

26.45

Einsatz für faires Spiel bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Bei einem Glücksrad wie rechts abgebildet soll das noch fehlende Feld mit einem Betrag so bestückt werden, dass das Spiel bei einem Einsatz von 10,5€ fair ist.

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 2 8 20 ?
Zufallsgröße xi 2 8 20 x
Zufallsgröße yi (Gewinn) -8.5 -2.5 9.5 x-10.5
P(X=xi) 4 8 2 8 1 8 1 8
xi ⋅ P(X=xi) 1 2 5 2 1 8 ⋅ x
yi ⋅ P(Y=yi) - 17 4 - 5 8 9.5 8 1 8 ⋅(x-10.5)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 10.5

4 8 · 2 + 2 8 · 8 + 1 8 · 20 + 1 8 x = 10.5

1 +2 + 5 2 + 1 8 x = 10.5

1 +2 + 5 2 + 1 8 x = 10,5
1 8 x + 11 2 = 10,5 |⋅ 8
8( 1 8 x + 11 2 ) = 84
x +44 = 84 | -44
x = 40

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

4 8 · ( -8,5 ) + 2 8 · ( -2,5 ) + 1 8 · 9,5 + 1 8 ( x -10,5 ) = 0

- 8,5 2 - 2,5 4 + 9,5 8 + 1 8 · x + 1 8 · ( -10,5 ) = 0

- 8,5 2 - 2,5 4 + 9,5 8 + 1 8 · x + 1 8 · ( -10,5 ) = 0
-4,25 -0,625 +1,1875 + 1 8 x -1,3125 = 0
1 8 x -5 = 0 |⋅ 8
8( 1 8 x -5 ) = 0
x -40 = 0 | +40
x = 40

In beiden Fällen ist also der gesuchte Betrag: 40

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:

  • Das Spiel mit dem Glücksrad muss fair sein
  • Der Einsatz soll 7€ betragen
  • Der minimale Auszahlungsbetrag soll 2€ sein
  • Der maximale Auszahlungsbetrag soll soll 29€ sein
  • Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 29
Y Gewinn (Ausz. - Einsatz) -5 22
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 29
Y Gewinn (Ausz. - Einsatz) -5 22
P(X) = P(Y) 1 5 1 22
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 5 + 1 22 = 27 110
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 27 110 = 83 110 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 29
Y Gewinn (Ausz. - Einsatz) -5 22
P(X) = P(Y) 1 5 83 220 83 220 1 22
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 5 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 2 4.5 9.5 29
Y Gewinn (Ausz. - Einsatz) -5 -2.5 2.5 22
P(X) = P(Y) 1 5 83 220 83 220 1 22
Winkel 72° 135.82° 135.82° 16.36°
Y ⋅ P(Y) -1 - 83 88 83 88 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -5⋅ 1 5 + -2.5⋅ 83 220 + 2.5⋅ 83 220 + 22⋅ 1 22

= -1 - 83 88 + 83 88 + 1
= - 88 88 - 83 88 + 83 88 + 88 88
= 0 88
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st: 5 6

Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st: 5 34

Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st: 5 272

Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st: 1 816

Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 5 6 5 34 5 272 1 816
xi ⋅ P(X=xi) 5 6 5 17 15 272 1 204

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 5 6 + 2⋅ 5 34 + 3⋅ 5 272 + 4⋅ 1 816

= 5 6 + 5 17 + 15 272 + 1 204
= 680 816 + 240 816 + 45 816 + 4 816
= 969 816
= 19 16

1.19

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Ein Spieler darf aus einer Urne mit 9 blauen und 3 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 85€, bei 2 blauen bekommt er noch 16€, bei einer 7€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
blau -> blau -> blau 21 55
blau -> blau -> rot 9 55
blau -> rot -> blau 9 55
blau -> rot -> rot 9 220
rot -> blau -> blau 9 55
rot -> blau -> rot 9 220
rot -> rot -> blau 9 220
rot -> rot -> rot 1 220

Die Wahrscheinlichkeit für 0 mal 'blau' ist: 1 220

Die Wahrscheinlichkeit für 1 mal 'blau' ist: 9 220 + 9 220 + 9 220 = 27 220

Die Wahrscheinlichkeit für 2 mal 'blau' ist: 9 55 + 9 55 + 9 55 = 27 55

Die Wahrscheinlichkeit für 3 mal 'blau' ist: 21 55

Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 7 16 85
P(X=xi) 1 220 27 220 27 55 21 55
xi ⋅ P(X=xi) 0 189 220 432 55 357 11

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 1 220 + 7⋅ 27 220 + 16⋅ 27 55 + 85⋅ 21 55

= 0+ 189 220 + 432 55 + 357 11
= 0 220 + 189 220 + 1728 220 + 7140 220
= 9057 220

41.17

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 2 Asse, 6 Könige, 6 Damen und 6 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 400, 2 Damen 160 und 2 Buben 90 Punkte. Außerdem gibt es für ein Paar aus Dame und König 30 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 1 190
As -> König 3 95
As -> Dame 3 95
As -> Bube 3 95
König -> As 3 95
König -> König 3 38
König -> Dame 9 95
König -> Bube 9 95
Dame -> As 3 95
Dame -> König 9 95
Dame -> Dame 3 38
Dame -> Bube 9 95
Bube -> As 3 95
Bube -> König 9 95
Bube -> Dame 9 95
Bube -> Bube 3 38

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 1 190

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 3 38

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 3 38

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 3 38

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 9 95 + 9 95 = 18 95

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 400 160 90 30
P(X=xi) 1 190 3 38 3 38 3 38 18 95
xi ⋅ P(X=xi) 100 19 600 19 240 19 135 19 108 19

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 1 190 + 400⋅ 3 38 + 160⋅ 3 38 + 90⋅ 3 38 + 30⋅ 18 95

= 100 19 + 600 19 + 240 19 + 135 19 + 108 19
= 1183 19

62.26