Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Eine (faire) Münze wird 3 mal geworfen. Die Zufallsgröße X beschreibt die Anzahl der Würfe, bei denen "Zahl" erscheint. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Summe' sind folgende Werte möglich:

Zufallsgröße X0
zugehörige
Ereignisse
rot - rot
rot - blau
blau - rot
blau - blau

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Summe der Zahlen die bei den beiden Glücksräder erscheinen. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 2X = 3X = 4X = 5X = 6
zugehörige
Ergebnisse
1 - 11 - 2
2 - 1
1 - 3
2 - 2
3 - 1
2 - 3
3 - 2
3 - 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 2X = 3X = 4X = 5X = 6
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 2 1 2 1 4
+ 1 4 1 2
1 2 1 4
+ 1 4 1 4
+ 1 4 1 2
1 4 1 4
+ 1 4 1 4
1 4 1 4
  = 1 4 1 8 + 1 8 1 8 + 1 16 + 1 8 1 16 + 1 16 1 16



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X23456
P(X=k) 1 4 1 4 5 16 1 8 1 16

Zufallsgröße (auch ohne zur.)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 4 beschriftet sind und vier Kugeln, die mit der Zahl 6 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 16X = 24X = 36
zugehörige
Ergebnisse
4 - 44 - 6
6 - 4
6 - 6
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 16X = 24X = 36
zugehörige
Wahrscheinlichkeit P(X)
1 3 1 5 1 3 4 5
+ 2 3 2 5
2 3 3 5
  = 1 15 4 15 + 4 15 2 5



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X162436
P(X=k) 1 15 8 15 2 5

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Aus einem Kartenstapel mit 10 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 4 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 5-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 5 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X12345
P(X=k) 5 7 20 91 5 91 10 1001 1 1001

Zufallsgröße rückwärts

Beispiel:

Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei das Produkt der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?

Zufallsgröße X123469
P(X=k) 1 9 ???? 1 16

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Für X=1 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.

Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=1) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=1) = 1 9 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 9 und somit p1 = 1 3 .

Ebenso gibt es für X=9 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=9) = 1 16 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 16 und somit p3 = 1 4 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 3 - 1 4 = 12 12 - 4 12 - 3 12 = 5 12

Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p = α 360°

Somit erhalten wir:

α1 = 1 3 ⋅ 360° = 120°

α2 = 5 12 ⋅ 360° = 150°

α3 = 1 4 ⋅ 360° = 90°

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 100 Punkte, auf jedem fünften Los 15 Punkte, auf jedem vierten Los 8 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 100 15 8 1
Zufallsgröße xi 100 15 8 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 10 3 2 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 100⋅ 1 10 + 15⋅ 1 5 + 8⋅ 1 4 + 1⋅ 9 20

= 10+ 3+ 2+ 9 20
= 309 20

15.45

Einsatz für faires Spiel bestimmen

Beispiel:

In einer Urne sind 4 Kugeln, die mit 10€ beschriftet sind, 7 Kugeln, die mit 16€ und 7 Kugeln, die mit 26€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 6 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 23,92€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 10 16 26 ?
Zufallsgröße xi 10 16 26 x
Zufallsgröße yi (Gewinn) -13.92 -7.92 2.08 x-23.92
P(X=xi) 4 24 7 24 7 24 6 24
xi ⋅ P(X=xi) 5 3 14 3 91 12 6 24 ⋅ x
yi ⋅ P(Y=yi) - 55.68 24 - 55.44 24 14.56 24 6 24 ⋅(x-23.92)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 23.92

4 24 · 10 + 7 24 · 16 + 7 24 · 26 + 6 24 x = 23.92

5 3 + 14 3 + 91 12 + 6 24 x = 23.92

5 3 + 14 3 + 91 12 + 1 4 x = 23,92
1 4 x + 167 12 = 23,92 |⋅ 12
12( 1 4 x + 167 12 ) = 287,04
3x +167 = 287,04 | -167
3x = 120,04 |:3
x = 40,0133

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

4 24 · ( -13,92 ) + 7 24 · ( -7,92 ) + 7 24 · 2,08 + 6 24 ( x -23,92 ) = 0

- 13,92 6 - 55,44 24 + 14,56 24 + 1 4 · x + 1 4 · ( -23,92 ) = 0

- 13,92 6 - 55,44 24 + 14,56 24 + 1 4 · x + 1 4 · ( -23,92 ) = 0
-2,32 -2,31 +0,6067 + 1 4 x -5,98 = 0
1 4 x -10,0033 = 0 |⋅ 4
4( 1 4 x -10,0033 ) = 0
x -40,0133 = 0 | +40,0133
x = 40,0133

In beiden Fällen ist also der gesuchte Betrag: 40

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:

  • Das Spiel mit dem Glücksrad muss fair sein
  • Der Einsatz soll 10€ betragen
  • Der minimale Auszahlungsbetrag soll 3€ sein
  • Der maximale Auszahlungsbetrag soll soll 31€ sein
  • Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 3 31
Y Gewinn (Ausz. - Einsatz) -7 21
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 3 31
Y Gewinn (Ausz. - Einsatz) -7 21
P(X) = P(Y) 1 7 1 21
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 7 + 1 21 = 4 21
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 4 21 = 17 21 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 3 31
Y Gewinn (Ausz. - Einsatz) -7 21
P(X) = P(Y) 1 7 17 42 17 42 1 21
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 7 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 3 6.5 13.5 31
Y Gewinn (Ausz. - Einsatz) -7 -3.5 3.5 21
P(X) = P(Y) 1 7 17 42 17 42 1 21
Winkel 51.43° 145.71° 145.71° 17.14°
Y ⋅ P(Y) -1 - 17 12 17 12 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -7⋅ 1 7 + -3.5⋅ 17 42 + 3.5⋅ 17 42 + 21⋅ 1 21

= -1 - 17 12 + 17 12 + 1
= - 12 12 - 17 12 + 17 12 + 12 12
= 0 12
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 2 3

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 1 4

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 1 14

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 1 84

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 2 3 1 4 1 14 1 84
xi ⋅ P(X=xi) 2 3 1 2 3 14 1 21

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 2 3 + 2⋅ 1 4 + 3⋅ 1 14 + 4⋅ 1 84

= 2 3 + 1 2 + 3 14 + 1 21
= 28 42 + 21 42 + 9 42 + 2 42
= 60 42
= 10 7

1.43

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

In einem Kartenstapel befinden sich 4 Asse und 10 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As -> As 1 91
As -> As -> andereKarte 5 91
As -> andereKarte -> As 5 91
As -> andereKarte -> andereKarte 15 91
andereKarte -> As -> As 5 91
andereKarte -> As -> andereKarte 15 91
andereKarte -> andereKarte -> As 15 91
andereKarte -> andereKarte -> andereKarte 30 91

Die Wahrscheinlichkeit für 0 mal 'As' ist: 30 91

Die Wahrscheinlichkeit für 1 mal 'As' ist: 15 91 + 15 91 + 15 91 = 45 91

Die Wahrscheinlichkeit für 2 mal 'As' ist: 5 91 + 5 91 + 5 91 = 15 91

Die Wahrscheinlichkeit für 3 mal 'As' ist: 1 91

Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 10 20 30
P(X=xi) 30 91 45 91 15 91 1 91
xi ⋅ P(X=xi) 0 450 91 300 91 30 91

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 30 91 + 10⋅ 45 91 + 20⋅ 15 91 + 30⋅ 1 91

= 0+ 450 91 + 300 91 + 30 91
= 0 91 + 450 91 + 300 91 + 30 91
= 780 91
= 60 7

8.57

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 7 Asse, 6 Könige, 5 Damen und 6 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 500, 2 Könige 450, 2 Damen 200 und 2 Buben 50 Punkte. Außerdem gibt es für ein Paar aus Dame und König 30 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 7 92
As -> König 7 92
As -> Dame 35 552
As -> Bube 7 92
König -> As 7 92
König -> König 5 92
König -> Dame 5 92
König -> Bube 3 46
Dame -> As 35 552
Dame -> König 5 92
Dame -> Dame 5 138
Dame -> Bube 5 92
Bube -> As 7 92
Bube -> König 3 46
Bube -> Dame 5 92
Bube -> Bube 5 92

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 7 92

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 5 92

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 5 138

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 5 92

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 5 92 + 5 92 = 5 46

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 500 450 200 50 30
P(X=xi) 7 92 5 92 5 138 5 92 5 46
xi ⋅ P(X=xi) 875 23 1125 46 500 69 125 46 75 23

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 500⋅ 7 92 + 450⋅ 5 92 + 200⋅ 5 138 + 50⋅ 5 92 + 30⋅ 5 46

= 875 23 + 1125 46 + 500 69 + 125 46 + 75 23
= 5250 138 + 3375 138 + 1000 138 + 375 138 + 450 138
= 10450 138
= 5225 69

75.72