Aufgabenbeispiele von im rechtwinkl. Dreieck

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Gegenkathete berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von b.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(30°)= b 6.9cm

Multipliziert man nun mit 6.9cm, so folgt: b=sin(30°)*6.9cm

Also gilt b=3.45

Hypothenuse berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(42°)= 4.5cm c

Multipliziert man nun mit c und teilt durch sin(42°),

so folgt: c= 4.5cm sin(42°)

Also gilt c=6.73

Winkel berechnen (Sinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite β.

Lösung einblenden

Nach der Definition des Sinus gilt sin(β)= Gegenkathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: sin(β)= 5.7cm 7cm =0.814

Daraus ergibt sich β=54.52°

Ankathete berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(γ)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(58°)= a 6cm

Multipliziert man nun mit 6cm, so folgt: a=cos(58°)*6cm

Also gilt a=3.18

Hypothenuse berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(α)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(57°)= 4.3cm c

Multipliziert man nun mit c und teilt durch cos(57°),

so folgt: c= 4.3cm cos(57°)

Also gilt c=7.9

Winkel berechnen (Kosinus)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite α.

Lösung einblenden

Nach der Definition des Kosinus gilt cos(α)= Ankathete Hypotenuse

Setzt man die gegebenen Werte ein, so folgt: cos(α)= 6.5cm 7.2cm =0.903

Daraus ergibt sich α = 25.47°

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(γ) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(37°) = 3.7cm a

Multipliziert man nun mit 3.7cm und teilt durch tan(37°), so folgt:

a = 3.7cm tan(37°)

Also gilt a = 4.91cm

Gegenkathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von a.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(41°) = a 5.1cm

Multipliziert man nun mit 5.1cm, so folgt:

a = tan(41°)*5.1cm

Also gilt a = 4.43cm

Winkel berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Winkelweite α.

Lösung einblenden

Nach der Definition des Tangens gilt tan(α) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(α) = 6.2cm 5cm =1.24

Daraus folgt: α = 51.12°

Ankathete berechnen (Tangens)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme die Länge von c.

Lösung einblenden

Nach der Definition des Tangens gilt tan(β) = Gegenkathete Ankathete

Setzt man die gegebenen Werte ein, so folgt: tan(38°) = 4.4cm c

Multipliziert man nun mit 4.4cm und teilt durch tan(38°), so folgt:

c = 4.4cm tan(38°)

Also gilt c = 5.63cm