Aufgabenbeispiele von Ketten- und Produktregel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 2 ( -x +3 ) 4 und vereinfache:

Lösung einblenden

f(x)= - 1 2 ( -x +3 ) 4

f'(x)= -2 ( -x +3 ) 3 · ( -1 +0 )

= -2 ( -x +3 ) 3 · ( -1 )

= 2 ( -x +3 ) 3

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 2 ( 3x -2 ) 2 und vereinfache:

Lösung einblenden

f(x)= 1 2 ( 3x -2 ) 2

= 1 2 ( 3x -2 ) -2

=> f'(x) = - ( 3x -2 ) -3 · ( 3 +0 )

f'(x)= - 1 ( 3x -2 ) 3 · ( 3 +0 )

= - 1 ( 3x -2 ) 3 · ( 3 )

= - 3 ( 3x -2 ) 3

Kettenregel ohne e-Fktn 2 (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 sin( x 3 -4 ) und vereinfache:

Lösung einblenden

f(x)= -3 sin( x 3 -4 )

f'(x)= -3 cos( x 3 -4 ) · ( 3 x 2 +0 )

= -3 cos( x 3 -4 ) · ( 3 x 2 )

= -9 cos( x 3 -4 ) x 2

= -9 x 2 · cos( x 3 -4 )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(0).

Lösung einblenden

Wir können der Zeichnung rechts f(0) = -1 entnehmen.

Also gilt h(0) = g(f(0)) = g(-1)

g(-1) können wir auch wieder am (blauen) Graph ablesen:
h(0) = g(f(0)) = g(-1) = 4.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|1), der auf dem Graph von g liegt, also gilt:
1 = g(0)
Wegen 1 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(0|0) und Q2(-2|0), also bei
x1 = 0 und x2 = -2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 0 entnehmen.

Wir suchen also f(f '(1)) = f(0).

f(0) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(0) = -3 .

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(0)
Wegen -1 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(-3|0) und Q2(1|0), also bei
x1 = -3 und x2 = 1

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 4x -1 ) · cos( x ) und vereinfache:

Lösung einblenden

f(x)= ( 4x -1 ) · cos( x )

f'(x)= ( 4 +0 ) · cos( x ) + ( 4x -1 ) · ( - sin( x ) )

= 4 cos( x ) - ( 4x -1 ) · sin( x )

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x +6 ) · sin( x -2 ) und vereinfache:

Lösung einblenden

f(x)= ( x +6 ) · sin( x -2 )

f'(x)= ( 1 +0 ) · sin( x -2 ) + ( x +6 ) · cos( x -2 )

= sin( x -2 ) + ( x +6 ) · cos( x -2 )

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 3x -6 ) · sin( -2x ) und vereinfache:

Lösung einblenden

f(x)= ( 3x -6 ) · sin( -2x )

f'(x)= ( 3 +0 ) · sin( -2x ) + ( 3x -6 ) · cos( -2x ) · ( -2 )

= 3 sin( -2x ) + ( 3x -6 ) · ( -2 cos( -2x ) )

= 3 sin( -2x ) -2 ( 3x -6 ) · cos( -2x )

waagrechte Tang. bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -1
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -1 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -2 und bei x = 2 sind.
Der Extrempunkt des Graphs liegt bei x = 0, (also gilt g '(0) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

Für die Ableitung von f mit f(x)= x 2 -1 gilt: f'(x)= 2x . Diese setzen wir = 0:

2x = 0 |:2
x = 0

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 0, wodurch mit f'(0)=0 und g'(0)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(0) = f'(0)⋅g(0) + f(0)⋅g'(0) = 0⋅g(0) + f(0)⋅0 = 0.

Damit hat h an der Stelle x = 0 eine waagrechte Tangente.

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 und der Graph einer Funktion g (in der Abblidung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

x 2 = 0 | 2
x = 0
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(0)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 0 gilt, denn dann gilt ja f(g(x)) = f( 0) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 0 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 0, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 0) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagrechte Tang. bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -4x -12
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -4 )⋅g(x) + ( x 2 -4x -12 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell die Nullstellen von g bei x = -2, bei x = 2 und bei x = 0.
(also gilt g(-2) = g(-2) = g(-2) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -4x -12 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -12 ) 21

x1,2 = +4 ± 16 +48 2

x1,2 = +4 ± 64 2

x1 = 4 + 64 2 = 4 +8 2 = 12 2 = 6

x2 = 4 - 64 2 = 4 -8 2 = -4 2 = -2

Wir haben also sowohl bei f als auch bei g eine eine Nullstelle bei x = -2, wodurch in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(-2) = f'(-2)⋅g(-2) + f(-2)⋅g'(-2) = f'(-2)⋅0 + 0⋅g'(-2) = 0.

Damit hat h an der Stelle x = -2 eine waagrechte Tangente.