Aufgabenbeispiele von am Schaubild ohne Stammfkt.

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hoch- und Tiefpkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f '. Bestimme jeweils Typ und den x-Wert aller Extrempunkte des Graphen von f im abgebildeten Bereich.

Lösung einblenden

Da Extrempunkte immer eine waagrechte Tangente haben, gilt die notwendige Bedingung f '= 0, wir suchen also die Nullstellen der Ableitungsfunktion f '.

Um beurteilen zu können, ob es sich um einen Hochpunkt des Graphen von f, um eine Tiefpunkt oder keines von beidem (Sattelpunkt) handelt, kann man jeweils den Vorzeichenwechsel (VZW) der Funktion f ' anschauen (hinreichende Bedingung).

Wir untersuchen also alle Nullstellen der abgebildeten Ableitungsfunktion f '.

Wir erkennen bei x = -1 einen VZW in der Funktion f ' von + nach -. Also muss der Graph der Originalfunktion f bei x = -1 einen Hochpunkt haben.

Wir erkennen bei x = 2 einen VZW in der Funktion f ' von - nach +. Also muss der Graph der Originalfunktion f bei x = 2 einen Tiefpunkt haben.

Wendepunkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme alle Wendestellen von f im abgebildeten Bereich.
(die gesuchten x-Werte sind alle ganzzahlig)

Lösung einblenden

Da Wendestellen immer Extremstellen der Ableitung sind, müssen wir in der Abbildung nur nach den Extremstellen von f ' suchen.

Diese erkennen wir leicht bei x = 0 und x = -2.

Monotonie (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme möglichst große Intervalle, auf denen f monoton steigend, bzw. monoton fallend ist .

Lösung einblenden

Nach dem Monotoniesatz genügt es die Intervalle zu finden, in denen die Ableitungsfunktion f ', positiv bzw. negativ ist.

Wir erkennen: Im Intervall [-6;-1] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Wir erkennen: Im Intervall [-1;1] gilt: f '(x) ≤ 0, also ist f monoton fallend.

Wir erkennen: Im Intervall [1;6] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Extrempunkte der Ableitung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f'. Bestimme jeweils Typ und den x-Wert der Extrempunkte von f'' im abgebildeten Bereich.
(Die Lösungen sind ganzzahlig)

Lösung einblenden

Man erkennt am Graph von f', dass bei x = 1 eine maximale Steigung (m ≈ 3) ist. Dort hat also f'', die Ableitungsfunktion von f', einen Hochpunkt.

Minimaler Grad bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f.

Gezeichnet ist der Graph von f.

Wie groß muss der Grad von f mindestens sein?

Lösung einblenden

Man erkennt am Graph von f 3 Extrempunkte, also muss f' ( - die Ableitung von f - ) mindestens 3 Nullstellen und somit auch mindestens Grad 3 haben.

Weil bei ganzrationalen Funktionen mit jedem Ableiten der Grad um 1 verringert wird, muss der Grad der Originalfunktion f um 1 höher, also f vom Grad 4 sein.

Pkt mit paralleler Tangente (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f ', also der Ableitungsfunktion einer Funktion f.
Bestimme eine Stelle x, an der die Tangente an den Graph von f parallel zur Geraden g: y= -x +4 verläuft.

Lösung einblenden

Die Steigung der Tangente an den Graph von f, kurz die Tangentensteigung von f, ist f ', die Ableitung von f.

Da die Gerade g die Steigung -1 hat, muss die parallele Tangente auch die Steigung m = -1 haben. Es muss also f '(x) = -1 gelten.

Am Schaubild kann man f '(-2) = -1 und f '(0) = -1 ablesen.

Die gesuchten Stellen sind also x1 = -2 und x2 = 0.

Summe f(x) und f'(x) (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(1) + f '(1).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(1) = 2 entnehmen.

Außerdem können wir natürlich f(1) = 1 am Schaubild ablesen:

Also gilt: f(1) + f '(1) = 1 + 2 = 3.

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-3).

Lösung einblenden

Wir können der Zeichnung rechts f(-3) = 2 entnehmen.

Also gilt h(-3) = g(f(-3)) = g(2)

g(2) können wir auch wieder am (blauen) Graph ablesen:
h(-3) = g(f(-3)) = g(2) = 1.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -3 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -3 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|-3), der auf dem Graph von g liegt, also gilt:
-3 = g(0)
Wegen -3 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(-3|0) und Q2(1|0), also bei
x1 = -3 und x2 = 1

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(2)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(2) = 2 entnehmen.

Wir suchen also f(f '(2)) = f(2).

f(2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(2)) = f(2) = -3 .

Produktregel am Schaubild

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(x)⋅g(x).
Bestimme h(-2) und h'(-2).

Lösung einblenden

Wir können der Zeichnung rechts f(-2) = -2 und g(-2) = -2 entnehmen.

Also gilt h(-2)= f(-2)⋅g(-2) = ( - 2 )( - 2 ) = 4

Für die Ableitung h'(x) gilt nach der Produktregel h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x)

Also h'(-2) = f'(-2)⋅g(-2) + f(-2)⋅g'(-2)

Da ja g (in blau gezeichnet) die Tangente an f in x=-2 ist, können wir am Graph von g sowohl f'(-2) als auch g'(-2) als Steigung m=-2 der Geraden ablesen, also gilt f'(-2) = g'(-2) = -2.

Somit gilt:
h'(-2) = f'(-2)⋅g(-2) + f(-2)⋅g'(-2)
= -2( - 2 ) + ( - 2 ) ( -2 )
= 8.

Wendepunkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme alle Wendestellen von f im abgebildeten Bereich.
(die gesuchten x-Werte sind alle ganzzahlig)

Lösung einblenden

Da Wendestellen immer Extremstellen der Ableitung sind, müssen wir in der Abbildung nur nach den Extremstellen von f ' suchen.

Diese erkennen wir leicht bei x = -1 und x = -3.