Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: p= 5 8

grün: Man erkennt einen Viertelkreis => p= 1 4

gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p= 1 8

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 25 64
rot -> blau 15 64
blau -> rot 15 64
blau -> blau 9 64

Einzel-Wahrscheinlichkeiten: rot: 5 8 ; blau: 3 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 25 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 64 = 25 64


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden
EreignisP
Teiler -> Teiler -> Teiler 8 27
Teiler -> Teiler -> kein Teiler 4 27
Teiler -> kein Teiler -> Teiler 4 27
Teiler -> kein Teiler -> kein Teiler 2 27
kein Teiler -> Teiler -> Teiler 4 27
kein Teiler -> Teiler -> kein Teiler 2 27
kein Teiler -> kein Teiler -> Teiler 2 27
kein Teiler -> kein Teiler -> kein Teiler 1 27

Einzel-Wahrscheinlichkeiten: Teiler: 2 3 ; kein Teiler: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'Teiler'-'kein Teiler' (P= 4 27 )
  • 'Teiler'-'kein Teiler'-'Teiler' (P= 4 27 )
  • 'kein Teiler'-'Teiler'-'Teiler' (P= 4 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 27 + 4 27 + 4 27 = 4 9


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 4 Mädchen und 6 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen höchstens 1 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 2 5 ; "nicht Mädchen": 3 5 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 1 30
Mädchen -> Mädchen -> nicht Mädchen 1 10
Mädchen -> nicht Mädchen -> Mädchen 1 10
Mädchen -> nicht Mädchen -> nicht Mädchen 1 6
nicht Mädchen -> Mädchen -> Mädchen 1 10
nicht Mädchen -> Mädchen -> nicht Mädchen 1 6
nicht Mädchen -> nicht Mädchen -> Mädchen 1 6
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 6

Einzel-Wahrscheinlichkeiten: Mädchen: 2 5 ; nicht Mädchen: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 6 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 1 6 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 1 6 )
'nicht Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 6 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 6 + 1 6 + 1 6 = 2 3


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 6 Mädchen und 4 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen höchstens 1 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 3 5 ; "nicht Mädchen": 2 5 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 1 6
Mädchen -> Mädchen -> nicht Mädchen 1 6
Mädchen -> nicht Mädchen -> Mädchen 1 6
Mädchen -> nicht Mädchen -> nicht Mädchen 1 10
nicht Mädchen -> Mädchen -> Mädchen 1 6
nicht Mädchen -> Mädchen -> nicht Mädchen 1 10
nicht Mädchen -> nicht Mädchen -> Mädchen 1 10
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 30

Einzel-Wahrscheinlichkeiten: Mädchen: 3 5 ; nicht Mädchen: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 10 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 1 10 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 1 10 )
'nicht Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 30 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 10 + 1 10 + 1 10 + 1 30 = 1 3


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 10 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 12 1 11 10 10
= 1 6 1 11 5 5
= 1 66

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 14 ist?

Lösung einblenden

Da ja ausschließlich nach '7' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '7' und 'nicht 7'

Einzel-Wahrscheinlichkeiten :"7": 2 5 ; "nicht 7": 3 5 ;

EreignisP
7 -> 7 2 15
7 -> nicht 7 4 15
nicht 7 -> 7 4 15
nicht 7 -> nicht 7 1 3

Einzel-Wahrscheinlichkeiten: 7: 2 5 ; nicht 7: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'7' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 = 2 15


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote, 4 blaue , 9 gelbe und 7 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 7 30 ; "nicht schwarz": 23 30 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'schwarz')=1- 253 435 = 182 435

EreignisP
schwarz -> schwarz 7 145
schwarz -> nicht schwarz 161 870
nicht schwarz -> schwarz 161 870
nicht schwarz -> nicht schwarz 253 435

Einzel-Wahrscheinlichkeiten: schwarz: 7 30 ; nicht schwarz: 23 30 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'schwarz'-'nicht schwarz' (P= 161 870 )
'nicht schwarz'-'schwarz' (P= 161 870 )
'schwarz'-'schwarz' (P= 7 145 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

161 870 + 161 870 + 7 145 = 182 435


Kombinatorik (ohne Binom.)

Beispiel:

Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.

Kombinatorik

Beispiel:

Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 6 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.