Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Urne sind 3 blaue, 1 grüne, 6 gelbe und 5 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 1 + 6 + 5=15
Hieraus ergibt sich für ...
blau: p= =
grün: p=
gelb: p= =
rot: p= =
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Wappen"?
Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'
Einzel-Wahrscheinlichkeiten :"Wappen": ; "nicht Wappen": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Wappen' alle Möglichkeiten enthalten, außer eben kein 'Wappen' bzw. 0 mal 'Wappen'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Wappen')=1- =
| Ereignis | P |
|---|---|
| Wappen -> Wappen -> Wappen | |
| Wappen -> Wappen -> nicht Wappen | |
| Wappen -> nicht Wappen -> Wappen | |
| Wappen -> nicht Wappen -> nicht Wappen | |
| nicht Wappen -> Wappen -> Wappen | |
| nicht Wappen -> Wappen -> nicht Wappen | |
| nicht Wappen -> nicht Wappen -> Wappen | |
| nicht Wappen -> nicht Wappen -> nicht Wappen |
Einzel-Wahrscheinlichkeiten: Wappen: ; nicht Wappen: ;
Die relevanten Pfade sind:- 'Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'Wappen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
| Ereignis | P |
|---|---|
| Teiler -> Teiler -> Teiler | |
| Teiler -> Teiler -> kein Teiler | |
| Teiler -> kein Teiler -> Teiler | |
| Teiler -> kein Teiler -> kein Teiler | |
| kein Teiler -> Teiler -> Teiler | |
| kein Teiler -> Teiler -> kein Teiler | |
| kein Teiler -> kein Teiler -> Teiler | |
| kein Teiler -> kein Teiler -> kein Teiler |
Einzel-Wahrscheinlichkeiten: Teiler: ; kein Teiler: ;
Die relevanten Pfade sind:- 'kein Teiler'-'kein Teiler'-'kein Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 3 rote, 7 blaue , 9 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: blau: ; nicht blau: ;
Die relevanten Pfade sind:
'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
Auf einen Schüleraustausch bewerben sich 7 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 2 an ein Mädchen gehen?
Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'
Einzel-Wahrscheinlichkeiten :"Mädchen": ; "nicht Mädchen": ;
| Ereignis | P |
|---|---|
| Mädchen -> Mädchen -> Mädchen | |
| Mädchen -> Mädchen -> nicht Mädchen | |
| Mädchen -> nicht Mädchen -> Mädchen | |
| Mädchen -> nicht Mädchen -> nicht Mädchen | |
| nicht Mädchen -> Mädchen -> Mädchen | |
| nicht Mädchen -> Mädchen -> nicht Mädchen | |
| nicht Mädchen -> nicht Mädchen -> Mädchen | |
| nicht Mädchen -> nicht Mädchen -> nicht Mädchen |
Einzel-Wahrscheinlichkeiten: Mädchen: ; nicht Mädchen: ;
Die relevanten Pfade sind:
'Mädchen'-'Mädchen'-'nicht Mädchen' (P=)
'Mädchen'-'nicht Mädchen'-'Mädchen' (P=)
'nicht Mädchen'-'Mädchen'-'Mädchen' (P=)
'Mädchen'-'Mädchen'-'Mädchen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
nur Summen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
mit Zurücklegen (einfach)
Beispiel:
In einer Urne sind 3 rote, 10 gelbe, 5 blaue und 6 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 2 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: blau: ; nicht blau: ;
Die relevanten Pfade sind:- 'blau'-'nicht blau' (P=)
- 'nicht blau'-'blau' (P=)
- 'nicht blau'-'nicht blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik (ohne Binom.)
Beispiel:
Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.
Kombinatorik
Beispiel:
Es findet ein Staffellauf im Biathlon der Herren statt. Der Trainer muss 3 Starter und auch die Reihenfolge der Starter nennen. In seinem Team sind 5 geeignete Kandidaten.Wie viele Startmöglichkeiten gibt es?
Für die erste Stelle ist jede(r) Kandidat möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende Kandidat nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 5 ⋅ 4 ⋅ 3 = 60 Möglichkeiten.
