Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6
Hieraus ergibt sich für ...
1: p=
2: p= =
3: p=
4: p=
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:- 'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal grün"?
Da ja ausschließlich nach 'grün' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'grün' und 'nicht grün'
Einzel-Wahrscheinlichkeiten :"grün": ; "nicht grün": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal grün' alle Möglichkeiten enthalten, außer eben 2 mal 'grün'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'grün')=1- =
| Ereignis | P |
|---|---|
| grün -> grün | |
| grün -> nicht grün | |
| nicht grün -> grün | |
| nicht grün -> nicht grün |
Einzel-Wahrscheinlichkeiten: grün: ; nicht grün: ;
Die relevanten Pfade sind:- 'grün'-'nicht grün' (P=)
- 'nicht grün'-'grün' (P=)
- 'nicht grün'-'nicht grün' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften höchstens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'
Einzel-Wahrscheinlichkeiten :"deutsch": ; "nicht deutsch": ;
| Ereignis | P |
|---|---|
| deutsch -> deutsch -> deutsch | |
| deutsch -> deutsch -> nicht deutsch | |
| deutsch -> nicht deutsch -> deutsch | |
| deutsch -> nicht deutsch -> nicht deutsch | |
| nicht deutsch -> deutsch -> deutsch | |
| nicht deutsch -> deutsch -> nicht deutsch | |
| nicht deutsch -> nicht deutsch -> deutsch | |
| nicht deutsch -> nicht deutsch -> nicht deutsch |
Einzel-Wahrscheinlichkeiten: deutsch: ; nicht deutsch: ;
Die relevanten Pfade sind:
'deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Lostopf sind 3 Kugeln mit einer Eins beschriftet, 6 Kugeln mit einer Zwei, 4 mit Drei und 7 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:
'3'-'4' (P=)
'4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'
Einzel-Wahrscheinlichkeiten :"15": ; "nicht 15": ;
| Ereignis | P |
|---|---|
| 15 -> 15 | |
| 15 -> nicht 15 | |
| nicht 15 -> 15 | |
| nicht 15 -> nicht 15 |
Einzel-Wahrscheinlichkeiten: 15: ; nicht 15: ;
Die relevanten Pfade sind:
'15'-'15' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 14 ist?
Da ja ausschließlich nach '7' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '7' und 'nicht 7'
Einzel-Wahrscheinlichkeiten :"7": ; "nicht 7": ;
| Ereignis | P |
|---|---|
| 7 -> 7 | |
| 7 -> nicht 7 | |
| nicht 7 -> 7 | |
| nicht 7 -> nicht 7 |
Einzel-Wahrscheinlichkeiten: 7: ; nicht 7: ;
Die relevanten Pfade sind:
'7'-'7' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Kombinatorik (ohne Binom.)
Beispiel:
Eine Mathelehrerin war bei 8 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?
Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.
Kombinatorik
Beispiel:
Eine Mathelehrerin war bei 4 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?
Für die erste Stelle ist jede(r) möglich. Es gibt also 4 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten.
