Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: p=
grün: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p=
gelb: Man erkennt einen halben Viertelkreis, also einen Achtelskreis => p=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Wappen"?
Ereignis | P |
---|---|
Zahl -> Zahl -> Zahl | |
Zahl -> Zahl -> Wappen | |
Zahl -> Wappen -> Zahl | |
Zahl -> Wappen -> Wappen | |
Wappen -> Zahl -> Zahl | |
Wappen -> Zahl -> Wappen | |
Wappen -> Wappen -> Zahl | |
Wappen -> Wappen -> Wappen |
Einzel-Wahrscheinlichkeiten: Zahl: ; Wappen: ;
Die relevanten Pfade sind:- 'Zahl'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'Zahl'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 8 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
Ereignis | P |
---|---|
3 -> 3 | |
3 -> nicht 3 | |
nicht 3 -> 3 | |
nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: 3: ; nicht 3: ;
Die relevanten Pfade sind:- '3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 4 vom Typ Kreuz, 5 vom Typ Herz, 5 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?
Ereignis | P |
---|---|
Kreuz -> Kreuz | |
Kreuz -> Herz | |
Kreuz -> Pik | |
Kreuz -> Karo | |
Herz -> Kreuz | |
Herz -> Herz | |
Herz -> Pik | |
Herz -> Karo | |
Pik -> Kreuz | |
Pik -> Herz | |
Pik -> Pik | |
Pik -> Karo | |
Karo -> Kreuz | |
Karo -> Herz | |
Karo -> Pik | |
Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Herz: ; Pik: ; Karo: ;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 9 Karten der Farbe Kreuz, 7 der Farbe Pik, 10 der Farbe Herz und 4 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal Kreuz und 1 mal Karo"?
Ereignis | P |
---|---|
Kreuz -> Kreuz | |
Kreuz -> Pik | |
Kreuz -> Herz | |
Kreuz -> Karo | |
Pik -> Kreuz | |
Pik -> Pik | |
Pik -> Herz | |
Pik -> Karo | |
Herz -> Kreuz | |
Herz -> Pik | |
Herz -> Herz | |
Herz -> Karo | |
Karo -> Kreuz | |
Karo -> Pik | |
Karo -> Herz | |
Karo -> Karo |
Einzel-Wahrscheinlichkeiten: Kreuz: ; Pik: ; Herz: ; Karo: ;
Die relevanten Pfade sind:
'Kreuz'-'Karo' (P=)
'Karo'-'Kreuz' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
nur Summen
Beispiel:
Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 9 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
1 -> 4 | |
1 -> 5 | |
1 -> 6 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
2 -> 4 | |
2 -> 5 | |
2 -> 6 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 | |
3 -> 4 | |
3 -> 5 | |
3 -> 6 | |
4 -> 1 | |
4 -> 2 | |
4 -> 3 | |
4 -> 4 | |
4 -> 5 | |
4 -> 6 | |
5 -> 1 | |
5 -> 2 | |
5 -> 3 | |
5 -> 4 | |
5 -> 5 | |
5 -> 6 | |
6 -> 1 | |
6 -> 2 | |
6 -> 3 | |
6 -> 4 | |
6 -> 5 | |
6 -> 6 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ; 5: ; 6: ;
Die relevanten Pfade sind:- '3'-'6' (P=)
- '6'-'3' (P=)
- '4'-'5' (P=)
- '5'-'4' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal König"?
Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'
Einzel-Wahrscheinlichkeiten :"König": ; "nicht König": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal König' alle Möglichkeiten enthalten, außer eben kein 'König' bzw. 0 mal 'König'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'König')=1- =
Ereignis | P |
---|---|
König -> König | |
König -> nicht König | |
nicht König -> König | |
nicht König -> nicht König |
Einzel-Wahrscheinlichkeiten: König: ; nicht König: ;
Die relevanten Pfade sind:
'König'-'nicht König' (P=)
'nicht König'-'König' (P=)
'König'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik (ohne Binom.)
Beispiel:
Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 7 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 3 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 8 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.
Für die Kategorie 'Vollmilch' gibt es 7 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 7 ⋅ 3 = 21 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 7 ⋅ 3 ⋅ 8 = 168 Möglichkeiten ergeben.
Kombinatorik
Beispiel:
Eine Mathelehrerin hat für die 5 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, eine Schokoladentafel, ein Pack Gummibärchen und eine Packung Kekse dabei. Jede der Süßigkeiten wird unter den 5 SchülerInnen verlost, wobei man nie mehr als eine Süßigkeit gewinnen kann. Wie viele verschiedene Möglichkeiten gibt es für die Gesamtverlosung?
Für die erste Stelle (Schokolade) ist jede(r) SchülerInnen möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle (Gummibärchen) ist der/die an erster Stelle (Schokolade) stehende SchülerInnen nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle (Kekse) fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 5 ⋅ 4 ⋅ 3 = 60 Möglichkeiten.