Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 5 Schülerinnen und Schüler den katholischen Religionsunterricht, 5 den evangelischen, und 5 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 5 + 5 + 5=15

Hieraus ergibt sich für ...

rk: p= 5 15 = 1 3

ev: p= 5 15 = 1 3

Eth: p= 5 15 = 1 3

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal Wappen"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: Zahl: 1 2 ; Wappen: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Zahl'-'Wappen' (P= 1 8 )
  • 'Zahl'-'Wappen'-'Zahl' (P= 1 8 )
  • 'Wappen'-'Zahl'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal schwarz und 1 mal grün"?

Lösung einblenden
EreignisP
rot -> rot 324 1369
rot -> schwarz 324 1369
rot -> grün 18 1369
schwarz -> rot 324 1369
schwarz -> schwarz 324 1369
schwarz -> grün 18 1369
grün -> rot 18 1369
grün -> schwarz 18 1369
grün -> grün 1 1369

Einzel-Wahrscheinlichkeiten: rot: 18 37 ; schwarz: 18 37 ; grün: 1 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'grün' (P= 18 1369 )
  • 'grün'-'schwarz' (P= 18 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

18 1369 + 18 1369 = 36 1369


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 5 rote, 10 blaue , 2 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 1 10 ; "nicht gelb": 9 10 ;

EreignisP
gelb -> gelb 1 190
gelb -> nicht gelb 9 95
nicht gelb -> gelb 9 95
nicht gelb -> nicht gelb 153 190

Einzel-Wahrscheinlichkeiten: gelb: 1 10 ; nicht gelb: 9 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'gelb'-'gelb' (P= 1 190 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 190 = 1 190


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 10 Karten der Farbe Kreuz, 3 der Farbe Pik, 9 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal Pik"?

Lösung einblenden

Da ja ausschließlich nach 'Pik' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Pik' und 'nicht Pik'

Einzel-Wahrscheinlichkeiten :"Pik": 3 25 ; "nicht Pik": 22 25 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Pik' alle Möglichkeiten enthalten, außer eben 2 mal 'Pik'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Pik')=1- 1 100 = 99 100

EreignisP
Pik -> Pik 1 100
Pik -> nicht Pik 11 100
nicht Pik -> Pik 11 100
nicht Pik -> nicht Pik 77 100

Einzel-Wahrscheinlichkeiten: Pik: 3 25 ; nicht Pik: 22 25 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Pik'-'nicht Pik' (P= 11 100 )
'nicht Pik'-'Pik' (P= 11 100 )
'nicht Pik'-'nicht Pik' (P= 77 100 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 100 + 11 100 + 77 100 = 99 100


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 18 2 17 1 16 15 15
= 1 3 1 17 1 16 5 5
= 1 816

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 28 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 35 92
13 -> 14 25 184
13 -> 15 5 46
14 -> 13 25 184
14 -> 14 5 138
14 -> 15 5 138
15 -> 13 5 46
15 -> 14 5 138
15 -> 15 1 46

Einzel-Wahrscheinlichkeiten: 13: 5 8 ; 14: 5 24 ; 15: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'15' (P= 5 46 )
'15'-'13' (P= 5 46 )
'14'-'14' (P= 5 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 46 + 5 46 + 5 138 = 35 138


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 9 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 13 3 12 9 11
= 1 13 3 3 11
= 9 143

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Kombinatorik (ohne Binom.)

Beispiel:

Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.

Kombinatorik

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 18 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 4 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 18 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 17 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 16 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 18 ⋅ 17 ⋅ 16 ⋅ 15 = 73440 Möglichkeiten.