Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 3 Schülerinnen und Schüler den katholischen Religionsunterricht, 8 den evangelischen, und 4 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 8 + 4=15

Hieraus ergibt sich für ...

rk: p= 3 15 = 1 5

ev: p= 8 15

Eth: p= 4 15

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 4 rote, 9 gelbe, 5 blaue und 6 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal gelb"?

Lösung einblenden
EreignisP
rot -> rot 1 36
rot -> blau 5 144
rot -> gelb 1 16
rot -> schwarz 1 24
blau -> rot 5 144
blau -> blau 25 576
blau -> gelb 5 64
blau -> schwarz 5 96
gelb -> rot 1 16
gelb -> blau 5 64
gelb -> gelb 9 64
gelb -> schwarz 3 32
schwarz -> rot 1 24
schwarz -> blau 5 96
schwarz -> gelb 3 32
schwarz -> schwarz 1 16

Einzel-Wahrscheinlichkeiten: rot: 1 6 ; blau: 5 24 ; gelb: 3 8 ; schwarz: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'gelb' (P= 1 16 )
  • 'gelb'-'rot' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 + 1 16 = 1 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 rote und 4 blaue Kugeln. Es wird 3 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 2 5 ; "nicht blau": 3 5 ;

EreignisP
blau -> blau -> blau 8 125
blau -> blau -> nicht blau 12 125
blau -> nicht blau -> blau 12 125
blau -> nicht blau -> nicht blau 18 125
nicht blau -> blau -> blau 12 125
nicht blau -> blau -> nicht blau 18 125
nicht blau -> nicht blau -> blau 18 125
nicht blau -> nicht blau -> nicht blau 27 125

Einzel-Wahrscheinlichkeiten: blau: 2 5 ; nicht blau: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'blau'-'nicht blau' (P= 12 125 )
  • 'blau'-'nicht blau'-'blau' (P= 12 125 )
  • 'nicht blau'-'blau'-'blau' (P= 12 125 )
  • 'blau'-'blau'-'blau' (P= 8 125 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 125 + 12 125 + 12 125 + 8 125 = 44 125


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "1 mal Ass und 1 mal Dame"?

Lösung einblenden
EreignisP
Ass -> Ass 1 15
Ass -> König 2 15
Ass -> Dame 2 15
König -> Ass 2 15
König -> König 1 15
König -> Dame 2 15
Dame -> Ass 2 15
Dame -> König 2 15
Dame -> Dame 1 15

Einzel-Wahrscheinlichkeiten: Ass: 1 3 ; König: 1 3 ; Dame: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'Dame' (P= 2 15 )
'Dame'-'Ass' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 + 2 15 = 4 15


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 7 rote und 3 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 7 15
rot -> blau 7 30
blau -> rot 7 30
blau -> blau 1 15

Einzel-Wahrscheinlichkeiten: rot: 7 10 ; blau: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 7 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 15 = 7 15


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 3 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 6 2 5 3 4
= 3 1 5 1 4
= 3 20

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 4 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 16 225
1 -> 2 28 225
1 -> 3 16 225
2 -> 1 28 225
2 -> 2 49 225
2 -> 3 28 225
3 -> 1 16 225
3 -> 2 28 225
3 -> 3 16 225

Einzel-Wahrscheinlichkeiten: 1: 4 15 ; 2: 7 15 ; 3: 4 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'3' (P= 28 225 )
  • '3'-'2' (P= 28 225 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

28 225 + 28 225 = 56 225


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 5 rote, 4 blaue , 4 gelbe und 7 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 1 4 ; "nicht rot": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 21 38 = 17 38

EreignisP
rot -> rot 1 19
rot -> nicht rot 15 76
nicht rot -> rot 15 76
nicht rot -> nicht rot 21 38

Einzel-Wahrscheinlichkeiten: rot: 1 4 ; nicht rot: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 15 76 )
'nicht rot'-'rot' (P= 15 76 )
'rot'-'rot' (P= 1 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 76 + 15 76 + 1 19 = 17 38


Kombinatorik (ohne Binom.)

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 4 Hosen entscheiden. Für die Füße stehen ihr 6 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 4 = 12 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 4 ⋅ 6 = 72 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 4 Schülerinnen. Diese möchte sie zufällig aus der 23-köpfigen Sportgruppe losen. Wie viele verschiedene 4er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 23 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 22 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 21 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 23 ⋅ 22 ⋅ 21 ⋅ 20 = 212520 Möglichkeiten, die 23 Möglichkeiten (Schülerin) auf die 4 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 212520 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 212520 24 = 8855 Möglichkeiten für 4er-Gruppen, die aus 23 Elementen (Schülerin) gebildet werden.