Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 3 blaue, 1 grüne, 6 gelbe und 5 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 1 + 6 + 5=15

Hieraus ergibt sich für ...

blau: p= 3 15 = 1 5

grün: p= 1 15

gelb: p= 6 15 = 2 5

rot: p= 5 15 = 1 3

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Wappen"?

Lösung einblenden

Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'

Einzel-Wahrscheinlichkeiten :"Wappen": 1 2 ; "nicht Wappen": 1 2 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Wappen' alle Möglichkeiten enthalten, außer eben kein 'Wappen' bzw. 0 mal 'Wappen'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Wappen')=1- 1 8 = 7 8

EreignisP
Wappen -> Wappen -> Wappen 1 8
Wappen -> Wappen -> nicht Wappen 1 8
Wappen -> nicht Wappen -> Wappen 1 8
Wappen -> nicht Wappen -> nicht Wappen 1 8
nicht Wappen -> Wappen -> Wappen 1 8
nicht Wappen -> Wappen -> nicht Wappen 1 8
nicht Wappen -> nicht Wappen -> Wappen 1 8
nicht Wappen -> nicht Wappen -> nicht Wappen 1 8

Einzel-Wahrscheinlichkeiten: Wappen: 1 2 ; nicht Wappen: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Wappen'-'nicht Wappen'-'nicht Wappen' (P= 1 8 )
  • 'nicht Wappen'-'Wappen'-'nicht Wappen' (P= 1 8 )
  • 'nicht Wappen'-'nicht Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'nicht Wappen' (P= 1 8 )
  • 'Wappen'-'nicht Wappen'-'Wappen' (P= 1 8 )
  • 'nicht Wappen'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'Wappen' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 + 1 8 = 7 8


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden
EreignisP
Teiler -> Teiler -> Teiler 8 27
Teiler -> Teiler -> kein Teiler 4 27
Teiler -> kein Teiler -> Teiler 4 27
Teiler -> kein Teiler -> kein Teiler 2 27
kein Teiler -> Teiler -> Teiler 4 27
kein Teiler -> Teiler -> kein Teiler 2 27
kein Teiler -> kein Teiler -> Teiler 2 27
kein Teiler -> kein Teiler -> kein Teiler 1 27

Einzel-Wahrscheinlichkeiten: Teiler: 2 3 ; kein Teiler: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'kein Teiler'-'kein Teiler'-'kein Teiler' (P= 1 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 27 = 1 27


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote, 7 blaue , 9 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 7 24 ; "nicht blau": 17 24 ;

EreignisP
blau -> blau 7 92
blau -> nicht blau 119 552
nicht blau -> blau 119 552
nicht blau -> nicht blau 34 69

Einzel-Wahrscheinlichkeiten: blau: 7 24 ; nicht blau: 17 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau' (P= 7 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 92 = 7 92


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 7 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 2 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 7 10 ; "nicht Mädchen": 3 10 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 7 24
Mädchen -> Mädchen -> nicht Mädchen 7 40
Mädchen -> nicht Mädchen -> Mädchen 7 40
Mädchen -> nicht Mädchen -> nicht Mädchen 7 120
nicht Mädchen -> Mädchen -> Mädchen 7 40
nicht Mädchen -> Mädchen -> nicht Mädchen 7 120
nicht Mädchen -> nicht Mädchen -> Mädchen 7 120
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 120

Einzel-Wahrscheinlichkeiten: Mädchen: 7 10 ; nicht Mädchen: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'nicht Mädchen' (P= 7 40 )
'Mädchen'-'nicht Mädchen'-'Mädchen' (P= 7 40 )
'nicht Mädchen'-'Mädchen'-'Mädchen' (P= 7 40 )
'Mädchen'-'Mädchen'-'Mädchen' (P= 7 24 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 40 + 7 40 + 7 40 + 7 24 = 49 60


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 24 2 23 1 22 21 21
= 1 4 1 23 1 22 7 7
= 1 2024

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: 1: 1 2 ; 2: 1 4 ; 3: 1 8 ; 4: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 1 8 )
  • '2'-'1' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 = 1 4


mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote, 10 gelbe, 5 blaue und 6 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 5 24 ; "nicht blau": 19 24 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 2 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'blau')=1- 25 576 = 551 576

EreignisP
blau -> blau 25 576
blau -> nicht blau 95 576
nicht blau -> blau 95 576
nicht blau -> nicht blau 361 576

Einzel-Wahrscheinlichkeiten: blau: 5 24 ; nicht blau: 19 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'nicht blau' (P= 95 576 )
  • 'nicht blau'-'blau' (P= 95 576 )
  • 'nicht blau'-'nicht blau' (P= 361 576 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

95 576 + 95 576 + 361 576 = 551 576


Kombinatorik (ohne Binom.)

Beispiel:

Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.

Kombinatorik

Beispiel:

Es findet ein Staffellauf im Biathlon der Herren statt. Der Trainer muss 3 Starter und auch die Reihenfolge der Starter nennen. In seinem Team sind 5 geeignete Kandidaten.Wie viele Startmöglichkeiten gibt es?

Lösung einblenden

Für die erste Stelle ist jede(r) Kandidat möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende Kandidat nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 5 ⋅ 4 ⋅ 3 = 60 Möglichkeiten.