Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 10 blaue, 9 grüne, 2 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 10 + 9 + 2 + 3=24

Hieraus ergibt sich für ...

blau: p= 10 24 = 5 12

grün: p= 9 24 = 3 8

gelb: p= 2 24 = 1 12

rot: p= 3 24 = 1 8

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 1 4 ; "nicht blau": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'blau')=1- 9 16 = 7 16

EreignisP
blau -> blau 1 16
blau -> nicht blau 3 16
nicht blau -> blau 3 16
nicht blau -> nicht blau 9 16

Einzel-Wahrscheinlichkeiten: blau: 1 4 ; nicht blau: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'nicht blau' (P= 3 16 )
  • 'nicht blau'-'blau' (P= 3 16 )
  • 'blau'-'blau' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 + 1 16 = 7 16


Ziehen mit Zurücklegen

Beispiel:

Beim Würfelspiel Mäxle würfelt man mit zwei Würfeln. Die größere Augenzahl nimmt man als Zehner, die kleinere als Einer (z.B. 3 und 5 ergibt 53). Ein Pasch (gleiche Zahlen bei beiden Würfeln) zählt mehr als alle anderen Ergebnisse. Lediglich ein Mäxle (eine 1 und ein 2) schlägt auch einen Pasch. Die beiden schlechtesten Ergebnisse sind also 31 und 32. Wie groß ist die Wahrscheinlichkeit dafür?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> höher 1 12
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> höher 1 12
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> höher 1 12
höher -> 1 1 12
höher -> 2 1 12
höher -> 3 1 12
höher -> höher 1 4

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; höher: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 36 )
  • '3'-'1' (P= 1 36 )
  • '2'-'3' (P= 1 36 )
  • '3'-'2' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 + 1 36 + 1 36 = 1 9


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 3 Mädchen und 7 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 1 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 3 10 ; "nicht Mädchen": 7 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Mädchen' alle Möglichkeiten enthalten, außer eben kein 'Mädchen' bzw. 0 mal 'Mädchen'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Mädchen')=1- 7 24 = 17 24

EreignisP
Mädchen -> Mädchen -> Mädchen 1 120
Mädchen -> Mädchen -> nicht Mädchen 7 120
Mädchen -> nicht Mädchen -> Mädchen 7 120
Mädchen -> nicht Mädchen -> nicht Mädchen 7 40
nicht Mädchen -> Mädchen -> Mädchen 7 120
nicht Mädchen -> Mädchen -> nicht Mädchen 7 40
nicht Mädchen -> nicht Mädchen -> Mädchen 7 40
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 7 24

Einzel-Wahrscheinlichkeiten: Mädchen: 3 10 ; nicht Mädchen: 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 7 40 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 7 40 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 7 40 )
'Mädchen'-'Mädchen'-'nicht Mädchen' (P= 7 120 )
'Mädchen'-'nicht Mädchen'-'Mädchen' (P= 7 120 )
'nicht Mädchen'-'Mädchen'-'Mädchen' (P= 7 120 )
'Mädchen'-'Mädchen'-'Mädchen' (P= 1 120 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 40 + 7 40 + 7 40 + 7 120 + 7 120 + 7 120 + 1 120 = 17 24


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 3 vom Typ Kreuz, 4 vom Typ Herz, 5 vom Typ Pik und 3 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 35
Kreuz -> Herz 2 35
Kreuz -> Pik 1 14
Kreuz -> Karo 3 70
Herz -> Kreuz 2 35
Herz -> Herz 2 35
Herz -> Pik 2 21
Herz -> Karo 2 35
Pik -> Kreuz 1 14
Pik -> Herz 2 21
Pik -> Pik 2 21
Pik -> Karo 1 14
Karo -> Kreuz 3 70
Karo -> Herz 2 35
Karo -> Pik 1 14
Karo -> Karo 1 35

Einzel-Wahrscheinlichkeiten: Kreuz: 1 5 ; Herz: 4 15 ; Pik: 1 3 ; Karo: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 35 )
'Herz'-'Herz' (P= 2 35 )
'Pik'-'Pik' (P= 2 21 )
'Karo'-'Karo' (P= 1 35 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 35 + 2 35 + 2 21 + 1 35 = 22 105


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 3 rote und 5 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 8 5 7
= 3 8 5 7
= 15 56

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 17 ist?

Lösung einblenden
EreignisP
7 -> 7 1 15
7 -> 8 2 15
7 -> 9 2 15
8 -> 7 2 15
8 -> 8 1 15
8 -> 9 2 15
9 -> 7 2 15
9 -> 8 2 15
9 -> 9 1 15

Einzel-Wahrscheinlichkeiten: 7: 1 3 ; 8: 1 3 ; 9: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'8'-'9' (P= 2 15 )
'9'-'8' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 + 2 15 = 4 15


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal Dame"?

Lösung einblenden

Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'

Einzel-Wahrscheinlichkeiten :"Dame": 1 3 ; "nicht Dame": 2 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Dame' alle Möglichkeiten enthalten, außer eben kein 'Dame' bzw. 0 mal 'Dame'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Dame')=1- 2 5 = 3 5

EreignisP
Dame -> Dame 1 15
Dame -> nicht Dame 4 15
nicht Dame -> Dame 4 15
nicht Dame -> nicht Dame 2 5

Einzel-Wahrscheinlichkeiten: Dame: 1 3 ; nicht Dame: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Dame'-'nicht Dame' (P= 4 15 )
'nicht Dame'-'Dame' (P= 4 15 )
'Dame'-'Dame' (P= 1 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 + 1 15 = 3 5


Kombinatorik (ohne Binom.)

Beispiel:

Eine 3-stellige Zahl soll gewürfelt werden. Dabei wird einfach 3 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden

Lösung einblenden

Bei jedem der 3 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 = 63 = 216 Möglichkeiten.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 9 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 3 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 6 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 9 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 9 ⋅ 3 = 27 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 9 ⋅ 3 ⋅ 6 = 162 Möglichkeiten ergeben.