Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 3 Asse, 2 Könige, 4 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 3 + 2 + 4 + 3=12

Hieraus ergibt sich für ...

Ass: p= 3 12 = 1 4

König: p= 2 12 = 1 6

Dame: p= 4 12 = 1 3

Bube: p= 3 12 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'keine_6' (P= 5 36 )
  • 'keine_6'-'6er' (P= 5 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 = 5 18


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden

Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'

Einzel-Wahrscheinlichkeiten :"Teiler": 2 3 ; "nicht Teiler": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Teiler' alle Möglichkeiten enthalten, außer eben 2 mal 'Teiler'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'Teiler')=1- 4 9 = 5 9

EreignisP
Teiler -> Teiler 4 9
Teiler -> nicht Teiler 2 9
nicht Teiler -> Teiler 2 9
nicht Teiler -> nicht Teiler 1 9

Einzel-Wahrscheinlichkeiten: Teiler: 2 3 ; nicht Teiler: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'nicht Teiler' (P= 2 9 )
  • 'nicht Teiler'-'Teiler' (P= 2 9 )
  • 'nicht Teiler'-'nicht Teiler' (P= 1 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 1 9 = 5 9


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 6 Mädchen und 4 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen höchstens 1 an ein Mädchen gehen?

Lösung einblenden

Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'

Einzel-Wahrscheinlichkeiten :"Mädchen": 3 5 ; "nicht Mädchen": 2 5 ;

EreignisP
Mädchen -> Mädchen -> Mädchen 1 6
Mädchen -> Mädchen -> nicht Mädchen 1 6
Mädchen -> nicht Mädchen -> Mädchen 1 6
Mädchen -> nicht Mädchen -> nicht Mädchen 1 10
nicht Mädchen -> Mädchen -> Mädchen 1 6
nicht Mädchen -> Mädchen -> nicht Mädchen 1 10
nicht Mädchen -> nicht Mädchen -> Mädchen 1 10
nicht Mädchen -> nicht Mädchen -> nicht Mädchen 1 30

Einzel-Wahrscheinlichkeiten: Mädchen: 3 5 ; nicht Mädchen: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 10 )
'nicht Mädchen'-'Mädchen'-'nicht Mädchen' (P= 1 10 )
'nicht Mädchen'-'nicht Mädchen'-'Mädchen' (P= 1 10 )
'nicht Mädchen'-'nicht Mädchen'-'nicht Mädchen' (P= 1 30 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 10 + 1 10 + 1 10 + 1 30 = 1 3


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 5 vom Typ Kreuz, 4 vom Typ Herz, 10 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 5 138
Kreuz -> Herz 5 138
Kreuz -> Pik 25 276
Kreuz -> Karo 25 552
Herz -> Kreuz 5 138
Herz -> Herz 1 46
Herz -> Pik 5 69
Herz -> Karo 5 138
Pik -> Kreuz 25 276
Pik -> Herz 5 69
Pik -> Pik 15 92
Pik -> Karo 25 276
Karo -> Kreuz 25 552
Karo -> Herz 5 138
Karo -> Pik 25 276
Karo -> Karo 5 138

Einzel-Wahrscheinlichkeiten: Kreuz: 5 24 ; Herz: 1 6 ; Pik: 5 12 ; Karo: 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 5 138 )
'Herz'-'Herz' (P= 1 46 )
'Pik'-'Pik' (P= 15 92 )
'Karo'-'Karo' (P= 5 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 138 + 1 46 + 15 92 + 5 138 = 71 276


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 5 rote und 3 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 8 2 7 5 6
= 1 4 1 7 5 2
= 5 56

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 5 kugel mit einer 2 und 7 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 14 95
1 -> 2 2 19
1 -> 3 14 95
2 -> 1 2 19
2 -> 2 1 19
2 -> 3 7 76
3 -> 1 14 95
3 -> 2 7 76
3 -> 3 21 190

Einzel-Wahrscheinlichkeiten: 1: 2 5 ; 2: 1 4 ; 3: 7 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 14 95 )
'3'-'1' (P= 14 95 )
'2'-'2' (P= 1 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

14 95 + 14 95 + 1 19 = 33 95


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 18 20
= 3 7 6 20
= 9 70

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Kombinatorik (ohne Binom.)

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 2 Hosen entscheiden. Für die Füße stehen ihr 3 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 2 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 2 = 6 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 3 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 2 ⋅ 3 = 18 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Eine bestimmte Variable soll im Computer mit 12 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 12 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 12 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 212 = 4096 Möglichkeiten.