Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 1 blaue, 3 grüne, 5 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 5 + 3=12

Hieraus ergibt sich für ...

blau: p= 1 12

grün: p= 3 12 = 1 4

gelb: p= 5 12

rot: p= 3 12 = 1 4

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 3 rote, 10 gelbe, 4 blaue und 3 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 3 20 ; "nicht rot": 17 20 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 9 400 = 391 400

EreignisP
rot -> rot 9 400
rot -> nicht rot 51 400
nicht rot -> rot 51 400
nicht rot -> nicht rot 289 400

Einzel-Wahrscheinlichkeiten: rot: 3 20 ; nicht rot: 17 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 51 400 )
  • 'nicht rot'-'rot' (P= 51 400 )
  • 'nicht rot'-'nicht rot' (P= 289 400 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

51 400 + 51 400 + 289 400 = 391 400


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'keine_6'-'keine_6'-'keine_6' (P= 125 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

125 216 = 125 216


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 6 Mädchen und 4 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 1 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 6
Mädchen -> Mädchen -> Jungs 1 6
Mädchen -> Jungs -> Mädchen 1 6
Mädchen -> Jungs -> Jungs 1 10
Jungs -> Mädchen -> Mädchen 1 6
Jungs -> Mädchen -> Jungs 1 10
Jungs -> Jungs -> Mädchen 1 10
Jungs -> Jungs -> Jungs 1 30

Einzel-Wahrscheinlichkeiten: Mädchen: 3 5 ; Jungs: 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Jungs'-'Jungs' (P= 1 10 )
'Jungs'-'Mädchen'-'Jungs' (P= 1 10 )
'Jungs'-'Jungs'-'Mädchen' (P= 1 10 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 10 + 1 10 + 1 10 = 3 10


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 6 rote, 8 blaue , 9 gelbe und 7 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 1 5 ; "nicht rot": 4 5 ;

EreignisP
rot -> rot 1 29
rot -> nicht rot 24 145
nicht rot -> rot 24 145
nicht rot -> nicht rot 92 145

Einzel-Wahrscheinlichkeiten: rot: 1 5 ; nicht rot: 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 1 29 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 29 = 1 29


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 3 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 5 3 4
= 1 5 3 2
= 3 10

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 6 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 5 ; "nicht 3": 4 5 ;

EreignisP
3 -> 3 3 95
3 -> nicht 3 16 95
nicht 3 -> 3 16 95
nicht 3 -> nicht 3 12 19

Einzel-Wahrscheinlichkeiten: 3: 1 5 ; nicht 3: 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'3' (P= 3 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 95 = 3 95


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 5 Kugeln mit einer Eins beschriftet, 5 Kugeln mit einer Zwei, 9 mit Drei und 5 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 5 ergeben?

Lösung einblenden
EreignisP
1 -> 1 5 138
1 -> 2 25 552
1 -> 3 15 184
1 -> 4 25 552
2 -> 1 25 552
2 -> 2 5 138
2 -> 3 15 184
2 -> 4 25 552
3 -> 1 15 184
3 -> 2 15 184
3 -> 3 3 23
3 -> 4 15 184
4 -> 1 25 552
4 -> 2 25 552
4 -> 3 15 184
4 -> 4 5 138

Einzel-Wahrscheinlichkeiten: 1: 5 24 ; 2: 5 24 ; 3: 3 8 ; 4: 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'4' (P= 25 552 )
'4'-'1' (P= 25 552 )
'2'-'3' (P= 15 184 )
'3'-'2' (P= 15 184 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 552 + 25 552 + 15 184 + 15 184 = 35 138


Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin war bei 4 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 4 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten.

Kombinatorik

Beispiel:

Eine Mathelehrerin verlost unter den 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 8 ⋅ 7 ⋅ 6 ⋅ 5 = 1680 Möglichkeiten, die 8 Möglichkeiten (SchülerIn) auf die 4 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 1680 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 1680 24 = 70 Möglichkeiten für 4er-Gruppen, die aus 8 Elementen (SchülerIn) gebildet werden.