Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 9 Schülerinnen und Schüler den katholischen Religionsunterricht, 5 den evangelischen, und 6 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 5 + 6=20

Hieraus ergibt sich für ...

rk: p= 9 20

ev: p= 5 20 = 1 4

Eth: p= 6 20 = 3 10

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 7 rote, 3 gelbe, 10 blaue und 4 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 1 6 ; "nicht schwarz": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'schwarz')=1- 25 36 = 11 36

EreignisP
schwarz -> schwarz 1 36
schwarz -> nicht schwarz 5 36
nicht schwarz -> schwarz 5 36
nicht schwarz -> nicht schwarz 25 36

Einzel-Wahrscheinlichkeiten: schwarz: 1 6 ; nicht schwarz: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'nicht schwarz' (P= 5 36 )
  • 'nicht schwarz'-'schwarz' (P= 5 36 )
  • 'schwarz'-'schwarz' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 1 36 = 11 36


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird zwei mal geworfen. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Einzel-Wahrscheinlichkeiten: 1: 1 6 ; 2: 1 6 ; 3: 1 6 ; 4: 1 6 ; 5: 1 6 ; 6: 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 1 36 )
  • '2'-'1' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 36 + 1 36 = 1 18


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 10 vom Typ Herz, 4 vom Typ Pik und 7 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 12 145
Kreuz -> Herz 3 29
Kreuz -> Pik 6 145
Kreuz -> Karo 21 290
Herz -> Kreuz 3 29
Herz -> Herz 3 29
Herz -> Pik 4 87
Herz -> Karo 7 87
Pik -> Kreuz 6 145
Pik -> Herz 4 87
Pik -> Pik 2 145
Pik -> Karo 14 435
Karo -> Kreuz 21 290
Karo -> Herz 7 87
Karo -> Pik 14 435
Karo -> Karo 7 145

Einzel-Wahrscheinlichkeiten: Kreuz: 3 10 ; Herz: 1 3 ; Pik: 2 15 ; Karo: 7 30 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 12 145 )
'Herz'-'Herz' (P= 3 29 )
'Pik'-'Pik' (P= 2 145 )
'Karo'-'Karo' (P= 7 145 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 145 + 3 29 + 2 145 + 7 145 = 36 145


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 1 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 1 2 ; "nicht Ass": 1 2 ;

EreignisP
Ass -> Ass 3 14
Ass -> nicht Ass 2 7
nicht Ass -> Ass 2 7
nicht Ass -> nicht Ass 3 14

Einzel-Wahrscheinlichkeiten: Ass: 1 2 ; nicht Ass: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'nicht Ass' (P= 2 7 )
'nicht Ass'-'Ass' (P= 2 7 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 7 + 2 7 = 4 7


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 10 3 9 6 8
= 1 5 3 3 1 2
= 1 10

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 8 kugel mit einer 2 und 6 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 3 38
1 -> 2 12 95
1 -> 3 9 95
2 -> 1 12 95
2 -> 2 14 95
2 -> 3 12 95
3 -> 1 9 95
3 -> 2 12 95
3 -> 3 3 38

Einzel-Wahrscheinlichkeiten: 1: 3 10 ; 2: 2 5 ; 3: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 12 95 )
'2'-'1' (P= 12 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 95 + 12 95 = 24 95


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 7 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 11 3 10 2 9 7 8
= 1 11 1 5 1 3 7 2
= 7 330

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin hat für die 12 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, eine Schokoladentafel, ein Pack Gummibärchen und eine Packung Kekse dabei. Jede der Süßigkeiten wird unter den 12 SchülerInnen verlost, wobei man nie mehr als eine Süßigkeit gewinnen kann. Wie viele verschiedene Möglichkeiten gibt es für die Gesamtverlosung?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 12 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 11 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 10 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 12 ⋅ 11 ⋅ 10 = 1320 Möglichkeiten.

Kombinatorik

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 20 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 3 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 20 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 19 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 18 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 20 ⋅ 19 ⋅ 18 = 6840 Möglichkeiten.