Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Das nebenstehende Glücksrad wird 2 mal gedreht. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 49 64
rot -> blau 7 64
blau -> rot 7 64
blau -> blau 1 64

Einzel-Wahrscheinlichkeiten: rot: 7 8 ; blau: 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'blau' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 64 = 1 64


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal grün"?

Lösung einblenden

Da ja ausschließlich nach 'grün' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'grün' und 'nicht grün'

Einzel-Wahrscheinlichkeiten :"grün": 1 37 ; "nicht grün": 36 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal grün' alle Möglichkeiten enthalten, außer eben 2 mal 'grün'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'grün')=1- 1 1369 = 1368 1369

EreignisP
grün -> grün 1 1369
grün -> nicht grün 36 1369
nicht grün -> grün 36 1369
nicht grün -> nicht grün 1296 1369

Einzel-Wahrscheinlichkeiten: grün: 1 37 ; nicht grün: 36 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'grün'-'nicht grün' (P= 36 1369 )
  • 'nicht grün'-'grün' (P= 36 1369 )
  • 'nicht grün'-'nicht grün' (P= 1296 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

36 1369 + 36 1369 + 1296 1369 = 1368 1369


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften höchstens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden

Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'

Einzel-Wahrscheinlichkeiten :"deutsch": 1 4 ; "nicht deutsch": 3 4 ;

EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> nicht deutsch 3 70
deutsch -> nicht deutsch -> deutsch 3 70
deutsch -> nicht deutsch -> nicht deutsch 11 70
nicht deutsch -> deutsch -> deutsch 3 70
nicht deutsch -> deutsch -> nicht deutsch 11 70
nicht deutsch -> nicht deutsch -> deutsch 11 70
nicht deutsch -> nicht deutsch -> nicht deutsch 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; nicht deutsch: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 70 + 11 70 + 11 70 + 11 28 = 121 140


Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 3 Kugeln mit einer Eins beschriftet, 6 Kugeln mit einer Zwei, 4 mit Drei und 7 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?

Lösung einblenden
EreignisP
1 -> 1 3 190
1 -> 2 9 190
1 -> 3 3 95
1 -> 4 21 380
2 -> 1 9 190
2 -> 2 3 38
2 -> 3 6 95
2 -> 4 21 190
3 -> 1 3 95
3 -> 2 6 95
3 -> 3 3 95
3 -> 4 7 95
4 -> 1 21 380
4 -> 2 21 190
4 -> 3 7 95
4 -> 4 21 190

Einzel-Wahrscheinlichkeiten: 1: 3 20 ; 2: 3 10 ; 3: 1 5 ; 4: 7 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'4' (P= 7 95 )
'4'-'3' (P= 7 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 95 + 7 95 = 14 95


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'

Einzel-Wahrscheinlichkeiten :"15": 1 6 ; "nicht 15": 5 6 ;

EreignisP
15 -> 15 1 46
15 -> nicht 15 10 69
nicht 15 -> 15 10 69
nicht 15 -> nicht 15 95 138

Einzel-Wahrscheinlichkeiten: 15: 1 6 ; nicht 15: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'15'-'15' (P= 1 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 46 = 1 46


nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 14 ist?

Lösung einblenden

Da ja ausschließlich nach '7' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '7' und 'nicht 7'

Einzel-Wahrscheinlichkeiten :"7": 1 2 ; "nicht 7": 1 2 ;

EreignisP
7 -> 7 3 14
7 -> nicht 7 2 7
nicht 7 -> 7 2 7
nicht 7 -> nicht 7 3 14

Einzel-Wahrscheinlichkeiten: 7: 1 2 ; nicht 7: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'7' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 14 = 3 14


Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin war bei 8 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.

Kombinatorik

Beispiel:

Eine Mathelehrerin war bei 4 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 4 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten.