Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 5 Schülerinnen und Schüler den katholischen Religionsunterricht, 7 den evangelischen, und 3 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 5 + 7 + 3=15
Hieraus ergibt sich für ...
rk: p= =
ev: p=
Eth: p= =
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'rot')=1- =
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: rot: ; nicht rot: ;
Die relevanten Pfade sind:- 'rot'-'nicht rot' (P=)
- 'nicht rot'-'rot' (P=)
- 'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 3 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
| Ereignis | P |
|---|---|
| Teiler -> Teiler -> Teiler | |
| Teiler -> Teiler -> kein Teiler | |
| Teiler -> kein Teiler -> Teiler | |
| Teiler -> kein Teiler -> kein Teiler | |
| kein Teiler -> Teiler -> Teiler | |
| kein Teiler -> Teiler -> kein Teiler | |
| kein Teiler -> kein Teiler -> Teiler | |
| kein Teiler -> kein Teiler -> kein Teiler |
Einzel-Wahrscheinlichkeiten: Teiler: ; kein Teiler: ;
Die relevanten Pfade sind:- 'Teiler'-'Teiler'-'Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
Auf einen Schüleraustausch bewerben sich 9 Mädchen und 3 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 1 an ein Mädchen gehen?
| Ereignis | P |
|---|---|
| Mädchen -> Mädchen -> Mädchen | |
| Mädchen -> Mädchen -> Jungs | |
| Mädchen -> Jungs -> Mädchen | |
| Mädchen -> Jungs -> Jungs | |
| Jungs -> Mädchen -> Mädchen | |
| Jungs -> Mädchen -> Jungs | |
| Jungs -> Jungs -> Mädchen | |
| Jungs -> Jungs -> Jungs |
Einzel-Wahrscheinlichkeiten: Mädchen: ; Jungs: ;
Die relevanten Pfade sind:
'Mädchen'-'Jungs'-'Jungs' (P=)
'Jungs'-'Mädchen'-'Jungs' (P=)
'Jungs'-'Jungs'-'Mädchen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Ass"?
Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'
Einzel-Wahrscheinlichkeiten :"Ass": ; "nicht Ass": ;
| Ereignis | P |
|---|---|
| Ass -> Ass | |
| Ass -> nicht Ass | |
| nicht Ass -> Ass | |
| nicht Ass -> nicht Ass |
Einzel-Wahrscheinlichkeiten: Ass: ; nicht Ass: ;
Die relevanten Pfade sind:
'Ass'-'Ass' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 3 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 29 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> 14 | |
| 13 -> 15 | |
| 14 -> 13 | |
| 14 -> 14 | |
| 14 -> 15 | |
| 15 -> 13 | |
| 15 -> 14 | |
| 15 -> 15 |
Einzel-Wahrscheinlichkeiten: 13: ; 14: ; 15: ;
Die relevanten Pfade sind:
'14'-'15' (P=)
'15'-'14' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal 1-12"?
Da ja ausschließlich nach '1-12' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '1-12' und 'nicht 1-12'
Einzel-Wahrscheinlichkeiten :"1-12": ; "nicht 1-12": ;
| Ereignis | P |
|---|---|
| 1-12 -> 1-12 | |
| 1-12 -> nicht 1-12 | |
| nicht 1-12 -> 1-12 | |
| nicht 1-12 -> nicht 1-12 |
Einzel-Wahrscheinlichkeiten: 1-12: ; nicht 1-12: ;
Die relevanten Pfade sind:- '1-12'-'1-12' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Kombinatorik (ohne Binom.)
Beispiel:
Eine Mathelehrerin hat für die 8 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, eine Schokoladentafel, ein Pack Gummibärchen und eine Packung Kekse dabei. Jede der Süßigkeiten wird unter den 8 SchülerInnen verlost, wobei man nie mehr als eine Süßigkeit gewinnen kann. Wie viele verschiedene Möglichkeiten gibt es für die Gesamtverlosung?
Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 8 ⋅ 7 ⋅ 6 = 336 Möglichkeiten.
Kombinatorik
Beispiel:
Eine Mathelehrerin war bei 8 SchülerInnen ihrer Klasse mit den Ergebnissen der letzten Klassenarbeit nicht zufrieden. Deswegen möchte sie jetzt diese Schüler immer in kleinen Abfragen erneut überprüfen. Als sie sich eine Reihenfolge überlegen wollte, bemerkt sie, dass es dafür ja ziemlich viele Möglichkeiten gibt. Wie viele genau?
Für die erste Stelle ist jede(r) möglich. Es gibt also 8 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 7 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 6 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 40320 Möglichkeiten.
