Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p=
grün: Man erkennt einen Kreisausschnitt, der so groß ist wie ein Viertelskreis zusammen mit einem Achtelskreis => p=
gelb: Man erkennt einen Viertelkreis => p=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal Wappen"?
Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'
Einzel-Wahrscheinlichkeiten :"Wappen": ; "nicht Wappen": ;
| Ereignis | P |
|---|---|
| Wappen -> Wappen -> Wappen | |
| Wappen -> Wappen -> nicht Wappen | |
| Wappen -> nicht Wappen -> Wappen | |
| Wappen -> nicht Wappen -> nicht Wappen | |
| nicht Wappen -> Wappen -> Wappen | |
| nicht Wappen -> Wappen -> nicht Wappen | |
| nicht Wappen -> nicht Wappen -> Wappen | |
| nicht Wappen -> nicht Wappen -> nicht Wappen |
Einzel-Wahrscheinlichkeiten: Wappen: ; nicht Wappen: ;
Die relevanten Pfade sind:- 'Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'Wappen'-'Wappen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind verschiedene Kugeln, 6 vom Typ rot und 4 vom Typ blau. Es wird 2 mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:- 'rot'-'rot' (P=)
- 'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 9 rote, 8 blaue , 4 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal gelb"?
Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'
Einzel-Wahrscheinlichkeiten :"gelb": ; "nicht gelb": ;
| Ereignis | P |
|---|---|
| gelb -> gelb | |
| gelb -> nicht gelb | |
| nicht gelb -> gelb | |
| nicht gelb -> nicht gelb |
Einzel-Wahrscheinlichkeiten: gelb: ; nicht gelb: ;
Die relevanten Pfade sind:
'gelb'-'nicht gelb' (P=)
'nicht gelb'-'gelb' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen ohne Zurücklegen
Beispiel:
Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften mindestens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?
Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'
Einzel-Wahrscheinlichkeiten :"deutsch": ; "nicht deutsch": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal deutsch' alle Möglichkeiten enthalten, außer eben kein 'deutsch' bzw. 0 mal 'deutsch'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'deutsch')=1- =
| Ereignis | P |
|---|---|
| deutsch -> deutsch -> deutsch | |
| deutsch -> deutsch -> nicht deutsch | |
| deutsch -> nicht deutsch -> deutsch | |
| deutsch -> nicht deutsch -> nicht deutsch | |
| nicht deutsch -> deutsch -> deutsch | |
| nicht deutsch -> deutsch -> nicht deutsch | |
| nicht deutsch -> nicht deutsch -> deutsch | |
| nicht deutsch -> nicht deutsch -> nicht deutsch |
Einzel-Wahrscheinlichkeiten: deutsch: ; nicht deutsch: ;
Die relevanten Pfade sind:
'deutsch'-'nicht deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'deutsch'-'nicht deutsch' (P=)
'nicht deutsch'-'nicht deutsch'-'deutsch' (P=)
'deutsch'-'deutsch'-'nicht deutsch' (P=)
'deutsch'-'nicht deutsch'-'deutsch' (P=)
'nicht deutsch'-'deutsch'-'deutsch' (P=)
'deutsch'-'deutsch'-'deutsch' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 26 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Da ja ausschließlich nach '13' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13' und 'nicht 13'
Einzel-Wahrscheinlichkeiten :"13": ; "nicht 13": ;
| Ereignis | P |
|---|---|
| 13 -> 13 | |
| 13 -> nicht 13 | |
| nicht 13 -> 13 | |
| nicht 13 -> nicht 13 |
Einzel-Wahrscheinlichkeiten: 13: ; nicht 13: ;
Die relevanten Pfade sind:
'13'-'13' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine durch 3 teilbare Zahl zu würfeln?
Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'
Einzel-Wahrscheinlichkeiten :"3er-Zahl": ; "nicht 3er-Zahl": ;
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl | |
| 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl | |
| nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl | |
| nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl | |
| nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl | |
| nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl |
Einzel-Wahrscheinlichkeiten: 3er-Zahl: ; nicht 3er-Zahl: ;
Die relevanten Pfade sind:- '3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P=)
- 'nicht 3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P=)
- 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P=)
- 'nicht 3er-Zahl'-'nicht 3er-Zahl'-'nicht 3er-Zahl' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Kombinatorik (ohne Binom.)
Beispiel:
Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 24 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 5 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?
Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 24 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 23 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 22 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 24 ⋅ 23 ⋅ 22 ⋅ 21 ⋅ 20 = 5100480 Möglichkeiten.
Kombinatorik
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 5 Schülerinnen. Diese möchte sie zufällig aus der 20-köpfigen Sportgruppe losen. Wie viele verschiedene 5er-Gruppen sind so möglich?
Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 20 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 19 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 18 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 20 ⋅ 19 ⋅ 18 ⋅ 17 ⋅ 16 = 1860480 Möglichkeiten, die 20 Möglichkeiten (Schülerin) auf die 5 "Ziehungen" (geloste) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 5er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 5er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 5er-Gruppe möglich. Es gibt also 5 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 5er-Gruppe.
Wir müssen deswegen die 1860480 Möglichkeiten für nach Reihenfolge sortierte 5er-Gruppen durch die 120 Möglichkeiten, die 5er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 15504 Möglichkeiten für 5er-Gruppen, die aus 20 Elementen (Schülerin) gebildet werden.
