Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 1 Schülerinnen und Schüler den katholischen Religionsunterricht, 4 den evangelischen, und 5 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 4 + 5=10
Hieraus ergibt sich für ...
rk: p=
ev: p= =
Eth: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine durch 3 teilbare Zahl zu würfeln?
| Ereignis | P |
|---|---|
| 3er-Zahl -> 3er-Zahl -> 3er-Zahl | |
| 3er-Zahl -> 3er-Zahl -> nicht 3er | |
| 3er-Zahl -> nicht 3er -> 3er-Zahl | |
| 3er-Zahl -> nicht 3er -> nicht 3er | |
| nicht 3er -> 3er-Zahl -> 3er-Zahl | |
| nicht 3er -> 3er-Zahl -> nicht 3er | |
| nicht 3er -> nicht 3er -> 3er-Zahl | |
| nicht 3er -> nicht 3er -> nicht 3er |
Einzel-Wahrscheinlichkeiten: 3er-Zahl: ; nicht 3er: ;
Die relevanten Pfade sind:- 'nicht 3er'-'nicht 3er'-'nicht 3er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 3 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 4 ist?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einer 8-ten Klasse gibt es 5 Schüler mit NWT-Profil, 6 Schüler mit sprachlichem Profil, 6 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?
Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'
Einzel-Wahrscheinlichkeiten :"NWT": ; "nicht NWT": ;
| Ereignis | P |
|---|---|
| NWT -> NWT | |
| NWT -> nicht NWT | |
| nicht NWT -> NWT | |
| nicht NWT -> nicht NWT |
Einzel-Wahrscheinlichkeiten: NWT: ; nicht NWT: ;
Die relevanten Pfade sind:
'nicht NWT'-'nicht NWT' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 4 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal König"?
Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'
Einzel-Wahrscheinlichkeiten :"König": ; "nicht König": ;
| Ereignis | P |
|---|---|
| König -> König | |
| König -> nicht König | |
| nicht König -> König | |
| nicht König -> nicht König |
Einzel-Wahrscheinlichkeiten: König: ; nicht König: ;
Die relevanten Pfade sind:
'König'-'König' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
nur Summen
Beispiel:
In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 9 kugel mit einer 2 und 3 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: 3: ; nicht 3: ;
Die relevanten Pfade sind:
'3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 8 rote, 10 blaue , 5 gelbe und 7 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'rot')=1- =
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> nicht rot | |
| nicht rot -> rot | |
| nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: rot: ; nicht rot: ;
Die relevanten Pfade sind:
'rot'-'nicht rot' (P=)
'nicht rot'-'rot' (P=)
'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik (ohne Binom.)
Beispiel:
Eine bestimmte Variable soll im Computer mit 9 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?
Bei jedem der 9 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 9 Ebenen immer 2-fach verzweigt.
Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 29 = 512 Möglichkeiten.
Kombinatorik
Beispiel:
Ein spezielles Zahlenschloss hat 3 Ringe mit jeweils 8 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?
Bei jedem der 3 'Zufallsversuche' gibt es 8 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 3 Ebenen immer 8-fach verzweigt.
Es entstehen so also 8 ⋅ 8 ⋅ 8 = 83 = 512 Möglichkeiten.
