Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 9 Schülerinnen und Schüler den katholischen Religionsunterricht, 6 den evangelischen, und 5 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 6 + 5=20
Hieraus ergibt sich für ...
rk: p=
ev: p= =
Eth: p= =
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine 6 zu würfeln?
Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'
Einzel-Wahrscheinlichkeiten :"6er": ; "nicht 6er": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 6er' alle Möglichkeiten enthalten, außer eben kein '6er' bzw. 0 mal '6er'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal '6er')=1- =
| Ereignis | P |
|---|---|
| 6er -> 6er | |
| 6er -> nicht 6er | |
| nicht 6er -> 6er | |
| nicht 6er -> nicht 6er |
Einzel-Wahrscheinlichkeiten: 6er: ; nicht 6er: ;
Die relevanten Pfade sind:- '6er'-'nicht 6er' (P=)
- 'nicht 6er'-'6er' (P=)
- '6er'-'6er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen mit Zurücklegen
Beispiel:
Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal 13-24"?
Da ja ausschließlich nach '13-24' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '13-24' und 'nicht 13-24'
Einzel-Wahrscheinlichkeiten :"13-24": ; "nicht 13-24": ;
| Ereignis | P |
|---|---|
| 13-24 -> 13-24 | |
| 13-24 -> nicht 13-24 | |
| nicht 13-24 -> 13-24 | |
| nicht 13-24 -> nicht 13-24 |
Einzel-Wahrscheinlichkeiten: 13-24: ; nicht 13-24: ;
Die relevanten Pfade sind:- '13-24'-'13-24' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 5 rote und 5 blaue Kugeln. Es wird 3 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?
| Ereignis | P |
|---|---|
| rot -> rot -> rot | |
| rot -> rot -> blau | |
| rot -> blau -> rot | |
| rot -> blau -> blau | |
| blau -> rot -> rot | |
| blau -> rot -> blau | |
| blau -> blau -> rot | |
| blau -> blau -> blau |
Einzel-Wahrscheinlichkeiten: rot: ; blau: ;
Die relevanten Pfade sind:
'rot'-'blau'-'blau' (P=)
'blau'-'rot'-'blau' (P=)
'blau'-'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Lostopf sind 8 Kugeln mit einer Eins beschriftet, 8 Kugeln mit einer Zwei, 2 mit Drei und 6 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:
'3'-'4' (P=)
'4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
nur Summen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: 1: ; 2: ; 3: ; 4: ;
Die relevanten Pfade sind:- '1'-'3' (P=)
- '3'-'1' (P=)
- '2'-'2' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 2 rote und 8 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal blau' alle Möglichkeiten enthalten, außer eben 2 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(2 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: blau: ; nicht blau: ;
Die relevanten Pfade sind:
'blau'-'nicht blau' (P=)
'nicht blau'-'blau' (P=)
'nicht blau'-'nicht blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Kombinatorik (ohne Binom.)
Beispiel:
Petra hat sich ein 6-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 6 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?
Für die erste Stelle ist jede(r) möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 4 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 Möglichkeiten.
Kombinatorik
Beispiel:
Eine Mathelehrerin verlost unter den 10 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 4 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 4er-Gruppe der glücklichen Gewinner?
Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 8 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 10 ⋅ 9 ⋅ 8 ⋅ 7 = 5040 Möglichkeiten, die 10 Möglichkeiten (SchülerIn) auf die 4 "Ziehungen" (Knobelbücher) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.
Wir müssen deswegen die 5040 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 210 Möglichkeiten für 4er-Gruppen, die aus 10 Elementen (SchülerIn) gebildet werden.
