Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsexperiment (einstufig)
Beispiel:
In einem Kartenstapel sind 7 Asse, 3 Könige, 3 Damen, und 7 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 3 + 3 + 7=20
Hieraus ergibt sich für ...
Ass: p=
König: p=
Dame: p=
Bube: p=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 2 mal Wappen"?
Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'
Einzel-Wahrscheinlichkeiten :"Wappen": ; "nicht Wappen": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal Wappen' alle Möglichkeiten enthalten, außer eben 3 mal 'Wappen'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(3 mal 'Wappen')=1- =
| Ereignis | P |
|---|---|
| Wappen -> Wappen -> Wappen | |
| Wappen -> Wappen -> nicht Wappen | |
| Wappen -> nicht Wappen -> Wappen | |
| Wappen -> nicht Wappen -> nicht Wappen | |
| nicht Wappen -> Wappen -> Wappen | |
| nicht Wappen -> Wappen -> nicht Wappen | |
| nicht Wappen -> nicht Wappen -> Wappen | |
| nicht Wappen -> nicht Wappen -> nicht Wappen |
Einzel-Wahrscheinlichkeiten: Wappen: ; nicht Wappen: ;
Die relevanten Pfade sind:- 'Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'Wappen' (P=)
- 'Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'
Einzel-Wahrscheinlichkeiten :"Teiler": ; "nicht Teiler": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Teiler')=1- =
| Ereignis | P |
|---|---|
| Teiler -> Teiler | |
| Teiler -> nicht Teiler | |
| nicht Teiler -> Teiler | |
| nicht Teiler -> nicht Teiler |
Einzel-Wahrscheinlichkeiten: Teiler: ; nicht Teiler: ;
Die relevanten Pfade sind:- 'Teiler'-'nicht Teiler' (P=)
- 'nicht Teiler'-'Teiler' (P=)
- 'Teiler'-'Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
ohne Zurücklegen (einfach)
Beispiel:
Auf einen Schüleraustausch bewerben sich 10 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen mindestens 2 an ein Mädchen gehen?
Da ja ausschließlich nach 'Mädchen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Mädchen' und 'nicht Mädchen'
Einzel-Wahrscheinlichkeiten :"Mädchen": ; "nicht Mädchen": ;
| Ereignis | P |
|---|---|
| Mädchen -> Mädchen -> Mädchen | |
| Mädchen -> Mädchen -> nicht Mädchen | |
| Mädchen -> nicht Mädchen -> Mädchen | |
| Mädchen -> nicht Mädchen -> nicht Mädchen | |
| nicht Mädchen -> Mädchen -> Mädchen | |
| nicht Mädchen -> Mädchen -> nicht Mädchen | |
| nicht Mädchen -> nicht Mädchen -> Mädchen | |
| nicht Mädchen -> nicht Mädchen -> nicht Mädchen |
Einzel-Wahrscheinlichkeiten: Mädchen: ; nicht Mädchen: ;
Die relevanten Pfade sind:
'Mädchen'-'Mädchen'-'nicht Mädchen' (P=)
'Mädchen'-'nicht Mädchen'-'Mädchen' (P=)
'nicht Mädchen'-'Mädchen'-'Mädchen' (P=)
'Mädchen'-'Mädchen'-'Mädchen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einer Urne sind 3 rote, 4 blaue , 10 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'blau')=1- =
| Ereignis | P |
|---|---|
| blau -> blau | |
| blau -> nicht blau | |
| nicht blau -> blau | |
| nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: blau: ; nicht blau: ;
Die relevanten Pfade sind:
'blau'-'nicht blau' (P=)
'nicht blau'-'blau' (P=)
'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 3 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
nur Summen
Beispiel:
In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 2 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?
Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'
Einzel-Wahrscheinlichkeiten :"15": ; "nicht 15": ;
| Ereignis | P |
|---|---|
| 15 -> 15 | |
| 15 -> nicht 15 | |
| nicht 15 -> 15 | |
| nicht 15 -> nicht 15 |
Einzel-Wahrscheinlichkeiten: 15: ; nicht 15: ;
Die relevanten Pfade sind:
'15'-'15' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 9 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 4.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Kombinatorik (ohne Binom.)
Beispiel:
Eine 2-stellige Zahl soll gewürfelt werden. Dabei wird einfach 2 mal mit einem normalen Würfel gewürfelt und die erwürfelten Zahlen hintereinander geschrieben. Wie viele verschiedene Zahlen können so gewürfelt werden
Bei jedem der 2 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 2 Ebenen immer 6-fach verzweigt.
Es entstehen so also 6 ⋅ 6 = 62 = 36 Möglichkeiten.
Kombinatorik
Beispiel:
Eine Mathelehrerin hat für die 5 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, eine Schokoladentafel, ein Pack Gummibärchen und eine Packung Kekse dabei. Jede der Süßigkeiten wird unter den 5 SchülerInnen verlost, wobei man nie mehr als eine Süßigkeit gewinnen kann. Wie viele verschiedene Möglichkeiten gibt es für die Gesamtverlosung?
Für die erste Stelle (Schokolade) ist jede(r) SchülerInnen möglich. Es gibt also 5 Möglichkeiten. Für die zweite Stelle (Gummibärchen) ist der/die an erster Stelle (Schokolade) stehende SchülerInnen nicht mehr möglich, es gibt also nur noch 4 Möglichkeiten. Für die 3. Stelle (Kekse) fehlen dann schon 2, so dass nur noch 3 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
also 5 ⋅ 4 ⋅ 3 = 60 Möglichkeiten.
