Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 4 Asse, 9 Könige, 6 Damen, und 5 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 9 + 6 + 5=24

Hieraus ergibt sich für ...

Ass: p= 4 24 = 1 6

König: p= 9 24 = 3 8

Dame: p= 6 24 = 1 4

Bube: p= 5 24

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> keine_6 5 216
6er -> keine_6 -> 6er 5 216
6er -> keine_6 -> keine_6 25 216
keine_6 -> 6er -> 6er 5 216
keine_6 -> 6er -> keine_6 25 216
keine_6 -> keine_6 -> 6er 25 216
keine_6 -> keine_6 -> keine_6 125 216

Einzel-Wahrscheinlichkeiten: 6er: 1 6 ; keine_6: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'keine_6'-'keine_6'-'keine_6' (P= 125 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

125 216 = 125 216


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote, 18 scharze und ein grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 18 37 ; "nicht schwarz": 19 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'schwarz')=1- 361 1369 = 1008 1369

EreignisP
schwarz -> schwarz 324 1369
schwarz -> nicht schwarz 342 1369
nicht schwarz -> schwarz 342 1369
nicht schwarz -> nicht schwarz 361 1369

Einzel-Wahrscheinlichkeiten: schwarz: 18 37 ; nicht schwarz: 19 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'nicht schwarz' (P= 342 1369 )
  • 'nicht schwarz'-'schwarz' (P= 342 1369 )
  • 'schwarz'-'schwarz' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

342 1369 + 342 1369 + 324 1369 = 1008 1369


ohne Zurücklegen (einfach)

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften mindestens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden

Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'

Einzel-Wahrscheinlichkeiten :"deutsch": 1 4 ; "nicht deutsch": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal deutsch' alle Möglichkeiten enthalten, außer eben kein 'deutsch' bzw. 0 mal 'deutsch'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'deutsch')=1- 11 28 = 17 28

EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> nicht deutsch 3 70
deutsch -> nicht deutsch -> deutsch 3 70
deutsch -> nicht deutsch -> nicht deutsch 11 70
nicht deutsch -> deutsch -> deutsch 3 70
nicht deutsch -> deutsch -> nicht deutsch 11 70
nicht deutsch -> nicht deutsch -> deutsch 11 70
nicht deutsch -> nicht deutsch -> nicht deutsch 11 28

Einzel-Wahrscheinlichkeiten: deutsch: 1 4 ; nicht deutsch: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'deutsch' (P= 11 70 )
'deutsch'-'deutsch'-'nicht deutsch' (P= 3 70 )
'deutsch'-'nicht deutsch'-'deutsch' (P= 3 70 )
'nicht deutsch'-'deutsch'-'deutsch' (P= 3 70 )
'deutsch'-'deutsch'-'deutsch' (P= 1 140 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 70 + 11 70 + 11 70 + 3 70 + 3 70 + 3 70 + 1 140 = 17 28


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 6 vom Typ Kreuz, 6 vom Typ Herz, 2 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 38
Kreuz -> Herz 9 95
Kreuz -> Pik 3 95
Kreuz -> Karo 9 95
Herz -> Kreuz 9 95
Herz -> Herz 3 38
Herz -> Pik 3 95
Herz -> Karo 9 95
Pik -> Kreuz 3 95
Pik -> Herz 3 95
Pik -> Pik 1 190
Pik -> Karo 3 95
Karo -> Kreuz 9 95
Karo -> Herz 9 95
Karo -> Pik 3 95
Karo -> Karo 3 38

Einzel-Wahrscheinlichkeiten: Kreuz: 3 10 ; Herz: 3 10 ; Pik: 1 10 ; Karo: 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 38 )
'Herz'-'Herz' (P= 3 38 )
'Pik'-'Pik' (P= 1 190 )
'Karo'-'Karo' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 38 + 3 38 + 1 190 + 3 38 = 23 95


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 6 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 9 2 8 6 7
= 3 3 2 4 1 7
= 1 14

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 28 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 58
13 -> 14 75 406
13 -> 15 15 203
14 -> 13 75 406
14 -> 14 45 406
14 -> 15 10 203
15 -> 13 15 203
15 -> 14 10 203
15 -> 15 3 203

Einzel-Wahrscheinlichkeiten: 13: 15 29 ; 14: 10 29 ; 15: 4 29 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'15' (P= 15 203 )
'15'-'13' (P= 15 203 )
'14'-'14' (P= 45 406 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

15 203 + 15 203 + 45 406 = 15 58


mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 8 rote, 2 gelbe, 7 blaue und 3 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 5 ; "nicht rot": 3 5 ;

EreignisP
rot -> rot 4 25
rot -> nicht rot 6 25
nicht rot -> rot 6 25
nicht rot -> nicht rot 9 25

Einzel-Wahrscheinlichkeiten: rot: 2 5 ; nicht rot: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 4 25 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 25 = 4 25


Kombinatorik (ohne Binom.)

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 7 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 6 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 8 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 7 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 6 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 7 ⋅ 6 = 42 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 7 ⋅ 6 ⋅ 8 = 336 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 7 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 8 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 7 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 7 = 42 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 7 ⋅ 8 = 336 Möglichkeiten ergeben.