Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 5 Schülerinnen und Schüler den katholischen Religionsunterricht, 4 den evangelischen, und 3 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 5 + 4 + 3=12

Hieraus ergibt sich für ...

rk: p= 5 12

ev: p= 4 12 = 1 3

Eth: p= 3 12 = 1 4

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er 2 27
3er-Zahl -> nicht 3er -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er -> nicht 3er 4 27
nicht 3er -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er -> 3er-Zahl -> nicht 3er 4 27
nicht 3er -> nicht 3er -> 3er-Zahl 4 27
nicht 3er -> nicht 3er -> nicht 3er 8 27

Einzel-Wahrscheinlichkeiten: 3er-Zahl: 1 3 ; nicht 3er: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er'-'nicht 3er' (P= 4 27 )
  • 'nicht 3er'-'3er-Zahl'-'nicht 3er' (P= 4 27 )
  • 'nicht 3er'-'nicht 3er'-'3er-Zahl' (P= 4 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 27 + 4 27 + 4 27 = 4 9


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wie in der Abbildung rechts wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit für "genau 1 mal C"?

Lösung einblenden

Da ja ausschließlich nach 'C' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'C' und 'nicht C'

Einzel-Wahrscheinlichkeiten :"C": 1 4 ; "nicht C": 3 4 ;

EreignisP
C -> C 1 16
C -> nicht C 3 16
nicht C -> C 3 16
nicht C -> nicht C 9 16

Einzel-Wahrscheinlichkeiten: C: 1 4 ; nicht C: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'C'-'nicht C' (P= 3 16 )
  • 'nicht C'-'C' (P= 3 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 16 + 3 16 = 3 8


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 6 Schüler mit NWT-Profil, 4 Schüler mit sprachlichem Profil, 8 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 4 ; "nicht NWT": 3 4 ;

EreignisP
NWT -> NWT 5 92
NWT -> nicht NWT 9 46
nicht NWT -> NWT 9 46
nicht NWT -> nicht NWT 51 92

Einzel-Wahrscheinlichkeiten: NWT: 1 4 ; nicht NWT: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht NWT'-'nicht NWT' (P= 51 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

51 92 = 51 92


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 6 vom Typ Kreuz, 7 vom Typ Herz, 3 vom Typ Pik und 4 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 38
Kreuz -> Herz 21 190
Kreuz -> Pik 9 190
Kreuz -> Karo 6 95
Herz -> Kreuz 21 190
Herz -> Herz 21 190
Herz -> Pik 21 380
Herz -> Karo 7 95
Pik -> Kreuz 9 190
Pik -> Herz 21 380
Pik -> Pik 3 190
Pik -> Karo 3 95
Karo -> Kreuz 6 95
Karo -> Herz 7 95
Karo -> Pik 3 95
Karo -> Karo 3 95

Einzel-Wahrscheinlichkeiten: Kreuz: 3 10 ; Herz: 7 20 ; Pik: 3 20 ; Karo: 1 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 38 )
'Herz'-'Herz' (P= 21 190 )
'Pik'-'Pik' (P= 3 190 )
'Karo'-'Karo' (P= 3 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 38 + 21 190 + 3 190 + 3 95 = 9 38


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 1 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?

Lösung einblenden

Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'

Einzel-Wahrscheinlichkeiten :"9": 1 4 ; "nicht 9": 3 4 ;

EreignisP
9 -> 9 1 28
9 -> nicht 9 3 14
nicht 9 -> 9 3 14
nicht 9 -> nicht 9 15 28

Einzel-Wahrscheinlichkeiten: 9: 1 4 ; nicht 9: 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'9'-'9' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 28 = 1 28


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 9 rote und 3 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal rot"?

Lösung einblenden
EreignisP
rot -> rot 6 11
rot -> blau 9 44
blau -> rot 9 44
blau -> blau 1 22

Einzel-Wahrscheinlichkeiten: rot: 3 4 ; blau: 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot' (P= 6 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

6 11 = 6 11


Kombinatorik (ohne Binom.)

Beispiel:

Eine Mathelehrerin hat für die 12 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, eine Schokoladentafel, ein Pack Gummibärchen und eine Packung Kekse dabei. Jede der Süßigkeiten wird unter den 12 SchülerInnen verlost, wobei man nie mehr als eine Süßigkeit gewinnen kann. Wie viele verschiedene Möglichkeiten gibt es für die Gesamtverlosung?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 12 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 11 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 10 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 12 ⋅ 11 ⋅ 10 = 1320 Möglichkeiten.

Kombinatorik

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 24 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 4 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 24 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 23 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 22 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 24 ⋅ 23 ⋅ 22 ⋅ 21 = 255024 Möglichkeiten.