Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er 2 27
3er-Zahl -> nicht 3er -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er -> nicht 3er 4 27
nicht 3er -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er -> 3er-Zahl -> nicht 3er 4 27
nicht 3er -> nicht 3er -> 3er-Zahl 4 27
nicht 3er -> nicht 3er -> nicht 3er 8 27

Einzel-Wahrscheinlichkeiten: 3er-Zahl: 1 3 ; nicht 3er: 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'3er-Zahl'-'nicht 3er' (P= 2 27 )
  • '3er-Zahl'-'nicht 3er'-'3er-Zahl' (P= 2 27 )
  • 'nicht 3er'-'3er-Zahl'-'3er-Zahl' (P= 2 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 = 2 9


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 2 2er und 4 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 4 15 ; "nicht 3": 11 15 ;

EreignisP
3 -> 3 16 225
3 -> nicht 3 44 225
nicht 3 -> 3 44 225
nicht 3 -> nicht 3 121 225

Einzel-Wahrscheinlichkeiten: 3: 4 15 ; nicht 3: 11 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'3' (P= 16 225 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 225 = 16 225


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 3 vom Typ Kreuz, 3 vom Typ Herz, 4 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen?

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 35
Kreuz -> Herz 3 70
Kreuz -> Pik 2 35
Kreuz -> Karo 1 14
Herz -> Kreuz 3 70
Herz -> Herz 1 35
Herz -> Pik 2 35
Herz -> Karo 1 14
Pik -> Kreuz 2 35
Pik -> Herz 2 35
Pik -> Pik 2 35
Pik -> Karo 2 21
Karo -> Kreuz 1 14
Karo -> Herz 1 14
Karo -> Pik 2 21
Karo -> Karo 2 21

Einzel-Wahrscheinlichkeiten: Kreuz: 1 5 ; Herz: 1 5 ; Pik: 4 15 ; Karo: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 35 )
'Herz'-'Herz' (P= 1 35 )
'Pik'-'Pik' (P= 2 35 )
'Karo'-'Karo' (P= 2 21 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 35 + 1 35 + 2 35 + 2 21 = 22 105


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 5 rote und 5 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 2 9
rot -> blau 5 18
blau -> rot 5 18
blau -> blau 2 9

Einzel-Wahrscheinlichkeiten: rot: 1 2 ; blau: 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'blau' (P= 5 18 )
'blau'-'rot' (P= 5 18 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 18 + 5 18 = 5 9


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 8 4 7
= 4 2 1 7
= 2 7

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 10 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 6 ; "nicht 3": 5 6 ;

EreignisP
3 -> 3 1 46
3 -> nicht 3 10 69
nicht 3 -> 3 10 69
nicht 3 -> nicht 3 95 138

Einzel-Wahrscheinlichkeiten: 3: 1 6 ; nicht 3: 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'3' (P= 1 46 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 46 = 1 46


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Kombinatorik (ohne Binom.)

Beispiel:

Sandy möchte sich ein Outfit zusammenstellen. Dabei kann sie beim Oberteil zwischen einer Bluse, einem T-Shirt und einem Pullover wählen. Außerdem muss sie sich für eine ihrer 3 Hosen entscheiden. Für die Füße stehen ihr 4 Paar Schuhe zur Verfügung. Wie viele verschiedene Outfits kann sie sich mit diesen Kleidungsstücken zusammenkombinieren?

Lösung einblenden

Für die Kategorie 'Oberteile' gibt es 3 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 3 Möglichkeiten der Kategorie 'Hosen' kombinieren. Dies ergibt also 3 ⋅ 3 = 9 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 4 Möglichkeiten der Kategorie 'Schuhe' kombinieren, so dass sich insgesamt 3 ⋅ 3 ⋅ 4 = 36 Möglichkeiten ergeben.

Kombinatorik

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 22 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 5 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 22 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 21 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 20 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 22 ⋅ 21 ⋅ 20 ⋅ 19 ⋅ 18 = 3160080 Möglichkeiten.