Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsexperiment (einstufig)

Beispiel:

Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl einen, zwei, drei oder vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6

Hieraus ergibt sich für ...

1: p= 1 6

2: p= 3 6 = 1 2

3: p= 1 6

4: p= 1 6

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 8 rote, 7 gelbe, 8 blaue und 7 schwarze Kugeln. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 7 30 ; "nicht gelb": 23 30 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal gelb' alle Möglichkeiten enthalten, außer eben 2 mal 'gelb'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'gelb')=1- 49 900 = 851 900

EreignisP
gelb -> gelb 49 900
gelb -> nicht gelb 161 900
nicht gelb -> gelb 161 900
nicht gelb -> nicht gelb 529 900

Einzel-Wahrscheinlichkeiten: gelb: 7 30 ; nicht gelb: 23 30 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'gelb'-'nicht gelb' (P= 161 900 )
  • 'nicht gelb'-'gelb' (P= 161 900 )
  • 'nicht gelb'-'nicht gelb' (P= 529 900 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

161 900 + 161 900 + 529 900 = 851 900


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal 1-12"?

Lösung einblenden

Da ja ausschließlich nach '1-12' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '1-12' und 'nicht 1-12'

Einzel-Wahrscheinlichkeiten :"1-12": 12 37 ; "nicht 1-12": 25 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 1-12' alle Möglichkeiten enthalten, außer eben 2 mal '1-12'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '1-12')=1- 144 1369 = 1225 1369

EreignisP
1-12 -> 1-12 144 1369
1-12 -> nicht 1-12 300 1369
nicht 1-12 -> 1-12 300 1369
nicht 1-12 -> nicht 1-12 625 1369

Einzel-Wahrscheinlichkeiten: 1-12: 12 37 ; nicht 1-12: 25 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1-12'-'nicht 1-12' (P= 300 1369 )
  • 'nicht 1-12'-'1-12' (P= 300 1369 )
  • 'nicht 1-12'-'nicht 1-12' (P= 625 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

300 1369 + 300 1369 + 625 1369 = 1225 1369


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 4 Asse, 2 Könige und 4 Damen. Es werden 2 Karten vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 2 5 ; "nicht Ass": 3 5 ;

EreignisP
Ass -> Ass 2 15
Ass -> nicht Ass 4 15
nicht Ass -> Ass 4 15
nicht Ass -> nicht Ass 1 3

Einzel-Wahrscheinlichkeiten: Ass: 2 5 ; nicht Ass: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'Ass' (P= 2 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 15 = 2 15


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 4 rote und 6 blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 2 5 ; "nicht rot": 3 5 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal rot' alle Möglichkeiten enthalten, außer eben 2 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'rot')=1- 2 15 = 13 15

EreignisP
rot -> rot 2 15
rot -> nicht rot 4 15
nicht rot -> rot 4 15
nicht rot -> nicht rot 1 3

Einzel-Wahrscheinlichkeiten: rot: 2 5 ; nicht rot: 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'nicht rot' (P= 4 15 )
'nicht rot'-'rot' (P= 4 15 )
'nicht rot'-'nicht rot' (P= 1 3 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 15 + 4 15 + 1 3 = 13 15


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 30 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden

Da ja ausschließlich nach '15' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '15' und 'nicht 15'

Einzel-Wahrscheinlichkeiten :"15": 4 19 ; "nicht 15": 15 19 ;

EreignisP
15 -> 15 2 57
15 -> nicht 15 10 57
nicht 15 -> 15 10 57
nicht 15 -> nicht 15 35 57

Einzel-Wahrscheinlichkeiten: 15: 4 19 ; nicht 15: 15 19 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'15'-'15' (P= 2 57 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 57 = 2 57


nur Summen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 5 ist?

Lösung einblenden
EreignisP
1 -> 1 1 25
1 -> 2 7 75
1 -> 3 1 15
2 -> 1 7 75
2 -> 2 49 225
2 -> 3 7 45
3 -> 1 1 15
3 -> 2 7 45
3 -> 3 1 9

Einzel-Wahrscheinlichkeiten: 1: 1 5 ; 2: 7 15 ; 3: 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '2'-'3' (P= 7 45 )
  • '3'-'2' (P= 7 45 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 45 + 7 45 = 14 45


Kombinatorik (ohne Binom.)

Beispiel:

Ein spezielles Zahlenschloss hat 4 Ringe mit jeweils 6 verschiedenen Zahlen drauf. Wie viele verschiedene Möglichkeiten kann man bei diesem Zahlenschloss einstellen?

Lösung einblenden

Bei jedem der 4 'Zufallsversuche' gibt es 6 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 4 Ebenen immer 6-fach verzweigt.

Es entstehen so also 6 ⋅ 6 ⋅ 6 ⋅ 6 = 64 = 1296 Möglichkeiten.

Kombinatorik

Beispiel:

Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede(r/s) SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 6 ⋅ 5 = 30 Möglichkeiten, die 6 Möglichkeiten (SchülerIn) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 2 ⋅ 1 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 30 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 30 2 = 15 Möglichkeiten für 2er-Gruppen, die aus 6 Elementen (SchülerIn) gebildet werden.