Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= 3 - ( - 3 ) 2 - 0

= 6 2

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 +2 x 2 +5 . Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 3 +2 0 2 +5 = -0 +20 +5 = 5 und
f(3) = - 3 3 +2 3 2 +5 = -27 +29 +5 = -4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= -4 - 5 3 - 0

= -9 3

= -3

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=2 und x2=3,5 hat bei einer Funktion f den Wert 3.Es gilt: f(2) = 4. Bestimme f(3,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(3,5) - f(2) 3,5 - 2 = 3

f(3,5) = 4 eingestezt (und Nenner verrechnet):

f(3,5) - 4 1,5 = 3 |⋅ 1,5

f(3,5) -4 = 4,5 |+4

f(3,5) = 8.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 +3 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= -2 x 2 +3 - ( -2 1 2 +3 ) x -1

= -2 x 2 +3 +2 1 2 -3 x -1

= -2 x 2 +2 1 2 x -1

= -2( x 2 - 1 2 ) x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= -2 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 -2( x +1 ) = -2( 1 +1 ) = -4

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= -2 ( 1 + h ) 2 +3 - ( -2 1 2 +3 ) h

= -2 ( 1 + h ) 2 +3 +2 1 2 -3 h

= -2 ( h +1 ) 2 +2 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 +2h +1 ) +2 h

= -2 h 2 -4h -2 +2 h

= -2 h 2 -4h h

= -2 h ( h +2 ) h

Jetzt können wir mit h kürzen:

= -2( h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 -2( h +2 ) = -2(0 +2 ) = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 3 +2 x 2 . Bestimme f'(-1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 ) = 3 x 3 +2 x 2 - ( 3 ( -1 ) 3 +2 ( -1 ) 2 ) x +1 = 3 x 3 +2 x 2 +3 -2 x +1 = 3 x 3 +2 x 2 +1 x +1

Jetzt setzen wir Werte für x ein, die sich immer mehr der -1 annähern:

x = -0.9: 3 ( -0,9 ) 3 +2 ( -0,9 ) 2 +1 0,1 ≈ 4.33

x = -0.99: 3 ( -0,99 ) 3 +2 ( -0,99 ) 2 +1 0,01 ≈ 4.9303

x = -0.999: 3 ( -0,999 ) 3 +2 ( -0,999 ) 2 +1 0,001 ≈ 4.993

x = -0.9999: 3 ( -0,9999 ) 3 +2 ( -0,9999 ) 2 +1 0,0001 ≈ 4.9993

x = -0.99999: 3 ( -1 ) 3 +2 ( -1 ) 2 +1 0.00001 ≈ 4.99993

Wir können nun also eine Vermutung für den Grenzwert für x → -1 bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 3 x 3 +2 x 2 +1 x +1 5

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 2 x 2 +4 - ( 2 u 2 +4 ) x - u

= 2 x 2 +4 -2 u 2 -4 x - u

= 2 x 2 -2 u 2 x - u

= 2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 2( x + u) = 2 · ( u + u ) = 4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 -2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x 2 -2 - ( 3 u 2 -2 ) x - u

= 3 x 2 -2 -3 u 2 +2 x - u

= 3 x 2 -3 u 2 x - u

= 3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3( x + u) = 3 · ( u + u ) = 6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 6x .