Aufgabenbeispiele von ohne Text-Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit vari. n (höchst.) (ohne Anwend.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,5.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, höchstens 35 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
610.9
620.8736
630.8432
640.8091
650.7715
660.7307
670.6873
680.6418
690.595
700.5475
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.5 und variablem n.

Es muss gelten: P0.5n (X35) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 50% der Versuche mit einem Treffer. Also müssten dann doch bei 35 0.5 ≈ 70 Versuchen auch ungefähr 35 (≈0.5⋅70) Treffer auftreten.

Wir berechnen also mit unserem ersten n=70:
P0.5n (X35) ≈ 0.5475 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=61 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit vari. n (höchst.) (ohne Anwend.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,6.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 70% Wahrscheinlichkeit, höchstens 26 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
410.7251
420.6554
430.5822
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.6 und variablem n.

Es muss gelten: P0.6n (X26) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 60% der Versuche mit einem Treffer. Also müssten dann doch bei 26 0.6 ≈ 43 Versuchen auch ungefähr 26 (≈0.6⋅43) Treffer auftreten.

Wir berechnen also mit unserem ersten n=43:
P0.6n (X26) ≈ 0.5822 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=41 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit vari. n (mind) (ohne Anwend.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,4.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 80% Wahrscheinlichkeit, mindestens 26 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
680.3396
690.3052
700.2728
710.2426
720.2146
730.1889
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.4 und variablem n.

Es muss gelten: P0.4n (X26) ≥ 0.8

Weil man ja aber P0.4n (X26) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.4n (X26) = 1 - P0.4n (X25) ≥ 0.8 |+ P0.4n (X25) - 0.8

0.2 ≥ P0.4n (X25) oder P0.4n (X25) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 40% der Versuche mit einem Treffer. Also müssten dann doch bei 26 0.4 ≈ 65 Versuchen auch ungefähr 26 (≈0.4⋅65) Treffer auftreten.

Wir berechnen also mit unserem ersten n=65:
P0.4n (X25) ≈ 0.453 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=73 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 73 sein, damit P0.4n (X25) ≤ 0.2 oder eben P0.4n (X26) ≥ 0.8 gilt.