Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
sin( 3x + 3 2 π) +3 = 3

Lösung einblenden
sin( 3x + 3 2 π) +3 = 3 | -3 canvas
sin( 3x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + 3 2 π = 0

oder

3x + 3 2 π = 2π |⋅ 2
2( 3x + 3 2 π) = 4π
6x +3π = 4π | -3π
6x = π |:6
x1 = 1 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x + 3 2 π = π

oder

3x + 3 2 π = π+2π
3x + 3 2 π = 3π |⋅ 2
2( 3x + 3 2 π) = 6π
6x +3π = 6π | -3π
6x = 3π |:6
x2 = 1 2 π

L={ 1 6 π ; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 cos( x - 1 2 π) = 0,2

Lösung einblenden
2 cos( x - 1 2 π) = 0,2 |:2
canvas
cos( x - 1 2 π) = 0,1 |cos-1(⋅)

Der WTR liefert nun als Wert 1.4706289056333

1. Fall:

x - 1 2 π = 1,471 |⋅ 2
2( x - 1 2 π) = 2,942
2x - π = 2,942 | + π
2x = 2,942 + π
2x = 6,0836 |:2
x1 = 3,0418

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 1 2 π) = 0,1 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,471
bzw. bei - 1,471 +2π= 4,813 liegen muss.

2. Fall:

x - 1 2 π = 4,813

oder

x - 1 2 π = 4,813 -2π |⋅ 2
2x - π = 9,626 -4π | + π
2x = 9,626 -3π
2x = 0,2012 |:2
x2 = 0,1006

L={ 0,1006 ; 3,0418 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( -3 sin( 2x - 1 2 π) -3 ) · ( x 2 - x ) = 0

Lösung einblenden
( -3 sin( 2x - 1 2 π) -3 ) ( x 2 - x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-3 sin( 2x - 1 2 π) -3 = 0 | +3
-3 sin( 2x - 1 2 π) = 3 |:-3
canvas
sin( 2x - 1 2 π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - 1 2 π = 3 2 π

oder

2x - 1 2 π = 3 2 π-2π
2x - 1 2 π = - 1 2 π |⋅ 2
2( 2x - 1 2 π) = -π
4x - π = -π | + π
4x = 0 |:4
x1 = 0

2. Fall:

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x2 = 0

2. Fall:

x -1 = 0 | +1
x3 = 1

L={0; 1 }

0 ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( x - 1 2 π) · cos( x ) = 0

Lösung einblenden
- cos( x - 1 2 π) · cos( x ) = 0
- cos( x - 1 2 π) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
cos( x - 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 1 2 π = 1 2 π |⋅ 2
2( x - 1 2 π) = π
2x - π = π | + π
2x = 2π |:2
x1 = π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - 1 2 π = 3 2 π

oder

x - 1 2 π = 3 2 π-2π
x - 1 2 π = - 1 2 π |⋅ 2
2( x - 1 2 π) = -π
2x - π = -π | + π
2x = 0 |:2
x2 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={0; 1 2 π ; π ; 3 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - sin( x ) = 0
( sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; 1 2 π ; π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Rücksubstitution:

u1: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 2 3 π ; π ; 4 3 π }