Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,09. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 90% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
10.91
20.8281
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.09 und variablem n.

Es muss gelten: P0.09n (X0) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 9% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.09 ≈ 0 Versuchen auch ungefähr 0 (≈0.09⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.09n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=1 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem p (diskret)

Beispiel:

In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 28 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
2 4 0.9981
3 5 0.9685
4 6 0.8738
5 7 0.7282
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.

Es muss gelten: Pp28 (X21) = 0.8 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp28 (X21) ('höchstens 21 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 2 4 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 4 6 die gesuchte Wahrscheinlichkeit über 80% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 4 sein.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,65.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, höchstens 20 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
310.5448
320.4485
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.65 und variablem n.

Es muss gelten: P0.65n (X20) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 65% der Versuche mit einem Treffer. Also müssten dann doch bei 20 0.65 ≈ 31 Versuchen auch ungefähr 20 (≈0.65⋅31) Treffer auftreten.

Wir berechnen also mit unserem ersten n=31:
P0.65n (X20) ≈ 0.5448 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=31 die gesuchte Wahrscheinlichkeit über 50% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 80% 39 oder mehr 6er zu erzielen?

Lösung einblenden
nP(X≤k)
......
2570.2369
2580.2286
2590.2204
2600.2125
2610.2047
2620.1972
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X39) ≥ 0.8

Weil man ja aber P 1 6 n (X39) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 6 n (X39) = 1 - P 1 6 n (X38) ≥ 0.8 |+ P 1 6 n (X38) - 0.8

0.2 ≥ P 1 6 n (X38) oder P 1 6 n (X38) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 39 1 6 ≈ 234 Versuchen auch ungefähr 39 (≈ 1 6 ⋅234) Treffer auftreten.

Wir berechnen also mit unserem ersten n=234:
P 1 6 n (X38) ≈ 0.4728 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=262 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 262 sein, damit P 1 6 n (X38) ≤ 0.2 oder eben P 1 6 n (X39) ≥ 0.8 gilt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,9. Das Zufallsexperiment soll 70 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 70 Versuchen höchstens k Treffer sind, weniger als 50% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
570.0205
580.0441
590.0873
600.1586
610.2637
620.4011
630.5582
640.7128
650.8412
660.9288
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.9 und n = 70.

Es muss gelten: P0.970 (Xk) < 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 62 immer noch weniger als 0.5 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.970 (X63) nimmt mit 55.82% einen Wert über 0.5 an.

Das größtmögliche k mit P0.970 (Xk) < 0.5 ist somit k = 62.

größtmöglicher Wert für k muss somit k = 62 sein.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 20 Fragen gestellt. Bei jeder Frage gibt es 4 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 6% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
30.2252
40.4148
50.6172
60.7858
70.8982
80.9591
90.9861
100.9961
110.9991
120.9998
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 4 und n = 20.

Es muss gelten: P 1 4 20 (Xk) < 0.06 (oranger Bereich)

oder andersrum ausgedrückt: P 1 4 20 (Xk-1) ≥ 0.94 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 7 immer noch weniger als 0.94 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 4 20 (X8) nimmt mit 95.91% einen Wert über 0.94 an.

Das kleinstmögliche k mit P 1 4 20 (Xk) = 1 - P 1 4 20 (Xk-1) < 0.06 ist somit k = 9.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 9 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,85. Das Zufallsexperiment soll 77 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 77 Versuchen höchstens k Treffer sind, weniger als 75% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
620.1718
630.2594
640.3681
650.4913
660.6183
670.7363
680.8347
690.9075
700.9546
710.9809
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.85 und n = 77.

Es muss gelten: P0.8577 (Xk) < 0.75

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 67 immer noch weniger als 0.75 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.8577 (X68) nimmt mit 83.47% einen Wert über 0.75 an.

Das größtmögliche k mit P0.8577 (Xk) < 0.75 ist somit k = 67.

größtmöglicher Wert für k muss somit k = 67 sein.

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)