Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 42 mod 6.

Lösung einblenden

Das nächst kleinere Vielfache von 6 ist 42, weil ja 7 ⋅ 6 = 42 ist.

Also bleibt als Rest eben noch 42 - 42 = 0.

Somit gilt: 42 mod 6 ≡ 0.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 40 und 49 für die gilt n ≡ 84 mod 3.

Lösung einblenden

Das nächst kleinere Vielfache von 3 ist 84, weil ja 28 ⋅ 3 = 84 ist.

Also bleibt als Rest eben noch 84 - 84 = 0.

Somit gilt: 84 mod 3 ≡ 0.

Wir suchen also eine Zahl zwischen 40 und 49 für die gilt: n ≡ 0 mod 3.

Dazu suchen wir einfach ein Vielfaches von 3 in der Nähe von 40, z.B. 42 = 14 ⋅ 3

Somit gilt: 42 ≡ 84 ≡ 0 mod 3.

Modulo addieren

Beispiel:

Berechne ohne WTR: (453 - 279) mod 9.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(453 - 279) mod 9 ≡ (453 mod 9 - 279 mod 9) mod 9.

453 mod 9 ≡ 3 mod 9 kann man relativ leicht bestimmen, weil ja 453 = 450+3 = 9 ⋅ 50 +3.

279 mod 9 ≡ 0 mod 9 kann man relativ leicht bestimmen, weil ja 279 = 270+9 = 9 ⋅ 30 +9.

Somit gilt:

(453 - 279) mod 9 ≡ (3 - 0) mod 9 ≡ 3 mod 9.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (16 ⋅ 76) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(16 ⋅ 76) mod 4 ≡ (16 mod 4 ⋅ 76 mod 4) mod 4.

16 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 16 = 16 + 0 = 4 ⋅ 4 + 0 ist.

76 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 76 = 76 + 0 = 19 ⋅ 4 + 0 ist.

Somit gilt:

(16 ⋅ 76) mod 4 ≡ (0 ⋅ 0) mod 4 ≡ 0 mod 4.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
40 mod m = 58 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 40 aus, ob zufällig 40 mod m = 58 mod m gilt:

m=2: 40 mod 2 = 0 = 0 = 58 mod 2

m=3: 40 mod 3 = 1 = 1 = 58 mod 3

m=4: 40 mod 4 = 0 ≠ 2 = 58 mod 4

m=5: 40 mod 5 = 0 ≠ 3 = 58 mod 5

m=6: 40 mod 6 = 4 = 4 = 58 mod 6

m=7: 40 mod 7 = 5 ≠ 2 = 58 mod 7

m=8: 40 mod 8 = 0 ≠ 2 = 58 mod 8

m=9: 40 mod 9 = 4 = 4 = 58 mod 9

m=10: 40 mod 10 = 0 ≠ 8 = 58 mod 10

m=11: 40 mod 11 = 7 ≠ 3 = 58 mod 11

m=12: 40 mod 12 = 4 ≠ 10 = 58 mod 12

m=13: 40 mod 13 = 1 ≠ 6 = 58 mod 13

m=14: 40 mod 14 = 12 ≠ 2 = 58 mod 14

m=15: 40 mod 15 = 10 ≠ 13 = 58 mod 15

m=16: 40 mod 16 = 8 ≠ 10 = 58 mod 16

m=17: 40 mod 17 = 6 ≠ 7 = 58 mod 17

m=18: 40 mod 18 = 4 = 4 = 58 mod 18

m=19: 40 mod 19 = 2 ≠ 1 = 58 mod 19

m=20: 40 mod 20 = 0 ≠ 18 = 58 mod 20

m=21: 40 mod 21 = 19 ≠ 16 = 58 mod 21

m=22: 40 mod 22 = 18 ≠ 14 = 58 mod 22

m=23: 40 mod 23 = 17 ≠ 12 = 58 mod 23

m=24: 40 mod 24 = 16 ≠ 10 = 58 mod 24

m=25: 40 mod 25 = 15 ≠ 8 = 58 mod 25

m=26: 40 mod 26 = 14 ≠ 6 = 58 mod 26

m=27: 40 mod 27 = 13 ≠ 4 = 58 mod 27

m=28: 40 mod 28 = 12 ≠ 2 = 58 mod 28

m=29: 40 mod 29 = 11 ≠ 0 = 58 mod 29

m=30: 40 mod 30 = 10 ≠ 28 = 58 mod 30

m=31: 40 mod 31 = 9 ≠ 27 = 58 mod 31

m=32: 40 mod 32 = 8 ≠ 26 = 58 mod 32

m=33: 40 mod 33 = 7 ≠ 25 = 58 mod 33

m=34: 40 mod 34 = 6 ≠ 24 = 58 mod 34

m=35: 40 mod 35 = 5 ≠ 23 = 58 mod 35

m=36: 40 mod 36 = 4 ≠ 22 = 58 mod 36

m=37: 40 mod 37 = 3 ≠ 21 = 58 mod 37

m=38: 40 mod 38 = 2 ≠ 20 = 58 mod 38

m=39: 40 mod 39 = 1 ≠ 19 = 58 mod 39

m=40: 40 mod 40 = 0 ≠ 18 = 58 mod 40

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (58 - 40) = 18 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6; 9; 18