Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
2 cos( 3x + π) +3 = 5

Lösung einblenden
2 cos( 3x + π) +3 = 5 | -3
2 cos( 3x + π) = 2 |:2
canvas
cos( 3x + π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x + π = 0

oder

3x + π = 2π | - π
3x = π |:3
x = 1 3 π

L={ 1 3 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
- sin( 2x - π) -2 = -2,55

Lösung einblenden
- sin( 2x - π) -2 = -2,55 | +2
- sin( 2x - π) = -0,55 |:-1
canvas
sin( 2x - π) = 0,55 |sin-1(⋅)

Der WTR liefert nun als Wert 0.58236423786874

1. Fall:

2x - π = 0,582 | + π
2x = 0,582 + π
2x = 3,7236 |:2
x1 = 1,8618

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - π) = 0,55 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.55 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,582 = 2,559 liegen muss.

2. Fall:

2x - π = 2,559 | + π
2x = 2,559 + π
2x = 5,7006 |:2
x2 = 2,8503

L={ 1,8618 ; 2,8503 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +2 cos( x ) +1 = 0

Lösung einblenden
( cos( x ) ) 2 +2 cos( x ) +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +2u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -2 ± 2 2 -4 · 1 · 1 21

u1,2 = -2 ± 4 -4 2

u1,2 = -2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = -2 2 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = π

L={ π }

π ist 2-fache Lösung!

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
2 cos( x + 3 2 π) · ( x -1 ) = 0

Lösung einblenden
2 cos( x + 3 2 π) · ( x -1 ) = 0
2 cos( x + 3 2 π) ( x -1 ) = 0
2 ( x -1 ) · cos( x + 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

canvas
cos( x + 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x + 3 2 π = 1 2 π

oder

x + 3 2 π = 1 2 π+2π
x + 3 2 π = 5 2 π |⋅ 2
2( x + 3 2 π) = 5π
2x +3π = 5π | -3π
2x = 2π |:2
x2 = π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x + 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x + 3 2 π = 3 2 π |⋅ 2
2( x + 3 2 π) = 3π
2x +3π = 3π | -3π
2x = 0 |:2
x3 = 0

L={0; 1 ; π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 1 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + 1 2 sin( x ) = 0
1 2 ( 2 sin( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +1 = 0 | -1
2 sin( x ) = -1 |:2
canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; π ; 7 6 π ; 11 6 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 -2 sin( x ) +1 = 0

Lösung einblenden
( sin( x ) ) 2 -2 sin( x ) +1 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -2u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

u1,2 = +2 ± 4 -4 2

u1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

u = 2 2 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

L={ 1 2 π }

1 2 π ist 2-fache Lösung!